Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Causality from Bottom to Top: A Survey (2403.11219v1)

Published 17 Mar 2024 in cs.AI

Abstract: Causality has become a fundamental approach for explaining the relationships between events, phenomena, and outcomes in various fields of study. It has invaded various fields and applications, such as medicine, healthcare, economics, finance, fraud detection, cybersecurity, education, public policy, recommender systems, anomaly detection, robotics, control, sociology, marketing, and advertising. In this paper, we survey its development over the past five decades, shedding light on the differences between causality and other approaches, as well as the preconditions for using it. Furthermore, the paper illustrates how causality interacts with new approaches such as AI, Generative AI (GAI), Machine and Deep Learning, Reinforcement Learning (RL), and Fuzzy Logic. We study the impact of causality on various fields, its contribution, and its interaction with state-of-the-art approaches. Additionally, the paper exemplifies the trustworthiness and explainability of causality models. We offer several ways to evaluate causality models and discuss future directions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (199)
  1. J. Y. Halpern, “A modification of the halpern-pearl definition of causality,” arXiv preprint arXiv:1505.00162, 2015.
  2. J. Pearl, “The seven tools of causal inference, with reflections on machine learning,” Communications of the ACM, vol. 62, no. 3, pp. 54–60, 2019.
  3. E. Bareinboim, J. D. Correa, D. Ibeling, and T. Icard, “On pearl’s hierarchy and the foundations of causal inference,” in Probabilistic and causal inference: the works of judea pearl, 2022, pp. 507–556.
  4. D. Ibeling and T. Icard, “A topological perspective on causal inference,” CoRR, vol. abs/2107.08558, 2021. [Online]. Available: https://arxiv.org/abs/2107.08558
  5. I. Shpitser and J. Pearl, “Complete identification methods for the causal hierarchy,” Journal of Machine Learning Research, vol. 9, pp. 1941–1979, 2008.
  6. D. H. Jonassen and I. G. Ionas, “Designing effective supports for causal reasoning,” Educational Technology Research and Development, vol. 56, pp. 287–308, 2008.
  7. S. S. Alhadad, “Visualizing data to support judgement, inference, and decision making in learning analytics: Insights from cognitive psychology and visualization science,” Journal of Learning Analytics, vol. 5, no. 2, pp. 60–85, 2018.
  8. S. A. Mulaik, “A brief history of the philosophical foundations of exploratory factor analysis,” Multivariate Behavioral Research, vol. 22, no. 3, pp. 267–305, 1987.
  9. G. Strawson, “David hume: objects and power,” in The New Hume Debate.   Routledge, 2002, pp. 43–63.
  10. L. Allais, “Kant’s one world: Interpreting’transcendental idealism’,” British Journal for the History of Philosophy, vol. 12, no. 4, pp. 655–684, 2004.
  11. T. J. McKeown, “Case studies and the statistical worldview: Review of king, keohane, and verba’s designing social inquiry: Scientific inference in qualitative research,” International organization, vol. 53, no. 1, pp. 161–190, 1999.
  12. J. Pearl, “Embracing causality in formal reasoning,” in Proceedings of the sixth National conference on Artificial intelligence-Volume 1, 1987, pp. 369–373.
  13. C. Glymour, R. Scheines, P. Spirtes, and K. Kelly, “Discovering causal structure: Artificial intelligence,” Philosophy of science, and Statistical Modeling, p. 394, 1987.
  14. V. Didelez, “Perspective on interviews with heckman, pearl, robins and rubin,” Observational Studies, vol. 8, no. 2, pp. 95–104, 2022.
  15. J. Sekhon, “The neyman—rubin model of causal inference and estimation via matching methods,” The Oxford handbook of political methodology, 2008.
  16. P. Spirtes and K. Zhang, “Causal discovery and inference: concepts and recent methodological advances,” in Applied informatics, vol. 3, no. 1.   SpringerOpen, 2016, pp. 1–28.
  17. A. Gelman, “Causality and statistical learning,” 2011.
  18. J. M. Mooij, J. Peters, D. Janzing, J. Zscheischler, and B. Schölkopf, “Distinguishing cause from effect using observational data: methods and benchmarks,” The Journal of Machine Learning Research, vol. 17, no. 1, pp. 1103–1204, 2016.
  19. S. Athey and G. W. Imbens, “Machine learning methods for estimating heterogeneous causal effects,” stat, vol. 1050, no. 5, pp. 1–26, 2015.
  20. D. Card, “The causal effect of education on earnings,” Handbook of labor economics, vol. 3, pp. 1801–1863, 1999.
  21. J. D. Angrist, G. W. Imbens, and D. B. Rubin, “Identification of causal effects using instrumental variables,” Journal of the American statistical Association, vol. 91, no. 434, pp. 444–455, 1996.
  22. J. Reiss, “Suppes’ probabilistic theory of causality and causal inference in economics,” in Patrick Suppes, Economics, and Economic Methodology.   Routledge, 2018, pp. 53–68.
  23. P. Suppes, “The measurement of belief,” Journal of the Royal Statistical Society: Series B (Methodological), vol. 36, no. 2, pp. 160–175, 1974.
  24. V. K. Raghu, J. D. Ramsey, A. Morris, D. V. Manatakis, P. Sprites, P. K. Chrysanthis, C. Glymour, and P. V. Benos, “Comparison of strategies for scalable causal discovery of latent variable models from mixed data,” International journal of data science and analytics, vol. 6, pp. 33–45, 2018.
  25. H. E. Brady, “Models of causal inference: Going beyond the neyman-rubin-holland theory,” in Annual Meetings of the Political Methodology Group, 2002.
  26. J. Pearl, “Causal diagrams for empirical research,” Biometrika, vol. 82, no. 4, pp. 669–688, 1995.
  27. ——, “Trygve haavelmo and the emergence of causal calculus,” Econometric Theory, vol. 31, no. 1, pp. 152–179, 2015.
  28. J. Cheng and R. Greiner, “Comparing bayesian network classifiers,” arXiv preprint arXiv:1301.6684, 2013.
  29. Y. Peng and J. A. Reggia, “A probabilistic causal model for diagnostic problem solving part i: Integrating symbolic causal inference with numeric probabilistic inference,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 17, no. 2, pp. 146–162, 1987.
  30. D. L. Weed, “Interpreting epidemiological evidence: how meta-analysis and causal inference methods are related,” International Journal of Epidemiology, vol. 29, no. 3, pp. 387–390, 2000.
  31. D. Galles and J. Pearl, “An axiomatic characterization of causal counterfactuals,” Foundations of Science, vol. 3, pp. 151–182, 1998.
  32. J. Vennekens, M. Bruynooghe, and M. Denecker, “Embracing events in causal modelling: Interventions and counterfactuals in cp-logic,” in European workshop on logics in artificial intelligence.   Springer, 2010, pp. 313–325.
  33. J. M. Robins, A. Rotnitzky, and D. O. Scharfstein, “Sensitivity analysis for selection bias and unmeasured confounding in missing data and causal inference models,” in Statistical models in epidemiology, the environment, and clinical trials.   Springer, 2000, pp. 1–94.
  34. M. L. Petersen, S. E. Sinisi, and M. J. van der Laan, “Estimation of direct causal effects,” Epidemiology, vol. 17, no. 3, pp. 276–284, 2006.
  35. T. Heskes, E. Sijben, I. G. Bucur, and T. Claassen, “Causal shapley values: Exploiting causal knowledge to explain individual predictions of complex models,” Advances in neural information processing systems, vol. 33, pp. 4778–4789, 2020.
  36. P. Schwab and W. Karlen, “Cxplain: Causal explanations for model interpretation under uncertainty,” Advances in neural information processing systems, vol. 32, 2019.
  37. J. Schaffer, “Anchoring as grounding: On epstein’s the ant trap,” Philosophy and Phenomenological Research, vol. 99, no. 3, pp. 749–767, 2019.
  38. G. Davey Smith and G. Hemani, “Mendelian randomization: genetic anchors for causal inference in epidemiological studies,” Human molecular genetics, vol. 23, no. R1, pp. R89–R98, 2014.
  39. G. Gurevich, D. Kliger, and B. Weiner, “The role of attribution of causality in economic decision making,” The Journal of Socio-Economics, vol. 41, no. 4, pp. 439–444, 2012.
  40. X. Huang and J. Marques-Silva, “The inadequacy of shapley values for explainability,” 2023.
  41. R. Foraita, J. Friemel, K. Günther, T. Behrens, J. Bullerdiek, R. Nimzyk, W. Ahrens, and V. Didelez, “Causal discovery of gene regulation with incomplete data,” Journal of the Royal Statistical Society Series A: Statistics in Society, vol. 183, no. 4, pp. 1747–1775, 2020.
  42. J. Kelly, C. Berzuini, B. Keavney, M. Tomaszewski, and H. Guo, “A review of causal discovery methods for molecular network analysis,” Molecular Genetics and Genomic Medicine, vol. 10, no. 10, Oct. 2022.
  43. R. O. Ness, K. Sachs, P. Mallick, and O. Vitek, “A bayesian active learning experimental design for inferring signaling networks,” in Research in Computational Molecular Biology: 21st Annual International Conference, RECOMB 2017, Hong Kong, China, May 3-7, 2017, Proceedings 21.   Springer, 2017, pp. 134–156.
  44. C. Glymour, K. Zhang, and P. Spirtes, “Review of causal discovery methods based on graphical models,” Frontiers in genetics, vol. 10, p. 524, 2019.
  45. C. Gao, Y. Zheng, W. Wang, F. Feng, X. He, and Y. Li, “Causal inference in recommender systems: A survey and future directions,” arXiv preprint arXiv:2208.12397, 2022.
  46. D. Goldenberg, J. Albert, L. Bernardi, and P. Estevez, “Free lunch! retrospective uplift modeling for dynamic promotions recommendation within roi constraints,” in Fourteenth ACM Conference on Recommender Systems, ser. RecSys ’20.   ACM, Sep. 2020. [Online]. Available: http://dx.doi.org/10.1145/3383313.3412215
  47. F. Moraes, H. M. Proença, A. Kornilova, J. Albert, and D. Goldenberg, “Uplift modeling: from causal inference to personalization,” 2023.
  48. D. Xu, Y. Wu, S. Yuan, L. Zhang, and X. Wu, “Achieving causal fairness through generative adversarial networks,” in Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, 2019.
  49. L. Gultchin, “Casual and trustworthy machine learning: methods and applications,” Ph.D. dissertation, University of Oxford, 2023.
  50. D. Plecko and E. Bareinboim, “Causal fairness analysis,” arXiv preprint arXiv:2207.11385, 2022.
  51. E. Bareinboim, A. Forney, and J. Pearl, “Bandits with unobserved confounders: a causal approach,” in Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 1, ser. NIPS’15.   Cambridge, MA, USA: MIT Press, 2015, p. 1342–1350.
  52. S. Lee and E. Bareinboim, “Structural causal bandits: Where to intervene?” Advances in neural information processing systems, vol. 31, 2018.
  53. A. K. Lampinen, N. Roy, I. Dasgupta, S. C. Chan, A. Tam, J. Mcclelland, C. Yan, A. Santoro, N. C. Rabinowitz, J. Wang et al., “Tell me why! explanations support learning relational and causal structure,” in International Conference on Machine Learning.   PMLR, 2022, pp. 11 868–11 890.
  54. F. Lattimore, T. Lattimore, and M. D. Reid, “Causal bandits: Learning good interventions via causal inference,” 2016.
  55. J. Richens and T. Everitt, “Robust agents learn causal world models,” 2024.
  56. A. Boustati, H. Chockler, and D. C. McNamee, “Transfer learning with causal counterfactual reasoning in decision transformers,” arXiv preprint arXiv:2110.14355, 2021.
  57. M. Edmonds, X. Ma, S. Qi, Y. Zhu, H. Lu, and S.-C. Zhu, “Theory-based causal transfer: Integrating instance-level induction and abstract-level structure learning,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 02, 2020, pp. 1283–1291.
  58. A. N. Carey and X. Wu, “The causal fairness field guide: Perspectives from social and formal sciences,” Frontiers in Big Data, vol. 5, p. 892837, 2022.
  59. Z. Chen, M. Xu, B. Gao, G. Sugihara, F. Shen, Y. Cai, A. Li, Q. Wu, L. Yang, Q. Yao et al., “Causation inference in complicated atmospheric environment,” Environmental Pollution, vol. 303, p. 119057, 2022.
  60. J. Pearl, “Causal inference in statistics: An overview,” Statistics Surveys, 2009.
  61. J. Zhang, “Causal inference and reasoning in causally insufficient systems,” Ph.D. dissertation, Citeseer, 2006.
  62. P. Hosseini, D. A. Broniatowski, and M. Diab, “Predicting directionality in causal relations in text,” arXiv preprint arXiv:2103.13606, 2021.
  63. P. Nadathur and S. Lauer, “Causal necessity, causal sufficiency, and the implications of causative verbs,” Glossa: a journal of general linguistics, vol. 5, no. 1, 2020.
  64. T. Harinen, “Mutual manipulability and causal inbetweenness,” Synthese, vol. 195, pp. 35–54, 2018.
  65. J. Woodward, “Causation and manipulability,” The Stanford Encyclopedia of Philosophy, 2016.
  66. P. A. White, “The causal asymmetry.” Psychological review, vol. 113, no. 1, p. 132, 2006.
  67. E. Eells and E. Sober, “Probabilistic causality and the question of transitivity,” Philosophy of science, vol. 50, no. 1, pp. 35–57, 1983.
  68. I. Bica, D. Jarrett, and M. van der Schaar, “Invariant causal imitation learning for generalizable policies,” Advances in Neural Information Processing Systems, vol. 34, pp. 3952–3964, 2021.
  69. J. W. Irwin, “The effects of explicitness and clause order on the comprehension of reversible causal relationships,” Reading Research Quarterly, pp. 477–488, 1980.
  70. L. Bertossi, J. Li, M. Schleich, D. Suciu, and Z. Vagena, “Causality-based explanation of classification outcomes,” in Proceedings of the Fourth International Workshop on Data Management for End-to-End Machine Learning, 2020, pp. 1–10.
  71. D. A. Lagnado, T. Gerstenberg, and R. Zultan, “Causal responsibility and counterfactuals,” Cognitive science, vol. 37, no. 6, pp. 1036–1073, 2013.
  72. J. D. Schenker and P. D. Rumrill Jr, “Causal-comparative research designs,” Journal of vocational rehabilitation, vol. 21, no. 3, pp. 117–121, 2004.
  73. N. Ganguly, D. Fazlija, M. Badar, M. Fisichella, S. Sikdar, J. Schrader, J. Wallat, K. Rudra, M. Koubarakis, G. K. Patro et al., “A review of the role of causality in developing trustworthy ai systems,” arXiv preprint arXiv:2302.06975, 2023.
  74. B. Befani, “Models of causality and causal inference,” Broadening the Range of Designs and Methods for Impact Evaluation, vol. 38, 2012.
  75. N. Cartwright, “Modularity: It can-and generally does-fail,” Stochastic Causality, 2001.
  76. D. J. Greiner and D. B. Rubin, “Causal effects of perceived immutable characteristics,” Review of Economics and Statistics, vol. 93, no. 3, pp. 775–785, 2011.
  77. M. H. Olesen, D. K. Thomsen, A. Schnieber, and J. Tønnesvang, “Distinguishing general causality orientations from personality traits,” Personality and individual differences, vol. 48, no. 5, pp. 538–543, 2010.
  78. C. Ksir and C. L. Hart, “Correlation still does not imply causation,” The Lancet Psychiatry, vol. 3, no. 5, p. 401, 2016.
  79. I. Guyon et al., “Practical feature selection: from correlation to causality,” Mining massive data sets for security: advances in data mining, search, social networks and text mining, and their applications to security, pp. 27–43, 2008.
  80. E. Bareinboim and J. Pearl, “A general algorithm for deciding transportability of experimental results,” Journal of Causal Inference, vol. 1, no. 1, p. 107–134, May 2013. [Online]. Available: http://dx.doi.org/10.1515/jci-2012-0004
  81. L. Yao, Z. Chu, S. Li, Y. Li, J. Gao, and A. Zhang, “A survey on causal inference,” ACM Transactions on Knowledge Discovery from Data (TKDD), vol. 15, no. 5, pp. 1–46, 2021.
  82. J. Pearl, “[bayesian analysis in expert systems]: comment: graphical models, causality and intervention,” Statistical Science, vol. 8, no. 3, pp. 266–269, 1993.
  83. A. Ghassami, A. Yang, I. Shpitser, and E. T. Tchetgen, “Causal inference with hidden mediators,” arXiv preprint arXiv:2111.02927, 2021.
  84. D. B. Rubin, “Causal inference using potential outcomes: Design, modeling, decisions,” Journal of the American Statistical Association, vol. 100, no. 469, pp. 322–331, 2005.
  85. S. O’Neill, N. Kreif, R. Grieve, M. Sutton, and J. S. Sekhon, “Estimating causal effects: considering three alternatives to difference-in-differences estimation,” Health Services and Outcomes Research Methodology, vol. 16, pp. 1–21, 2016.
  86. Y. Fan, J. Chen, G. Shirkey, R. John, S. R. Wu, H. Park, and C. Shao, “Applications of structural equation modeling (sem) in ecological studies: an updated review,” Ecological Processes, vol. 5, pp. 1–12, 2016.
  87. J. Pearl, “Graphs, causality, and structural equation models,” Sociological Methods & Research, vol. 27, no. 2, pp. 226–284, 1998.
  88. M. Caliendo and S. Kopeinig, “Some practical guidance for the implementation of propensity score matching,” Journal of economic surveys, vol. 22, no. 1, pp. 31–72, 2008.
  89. M. Li, “Using the propensity score method to estimate causal effects: A review and practical guide,” Organizational Research Methods, vol. 16, no. 2, pp. 188–226, 2013.
  90. C. Trampusch and B. Palier, “Between x and y: how process tracing contributes to opening the black box of causality,” New political economy, vol. 21, no. 5, pp. 437–454, 2016.
  91. L. Hood, L. Bloom, and C. J. Brainerd, “What, when, and how about why: A longitudinal study of early expressions of causality,” Monographs of the society for research in child development, pp. 1–47, 1979.
  92. P. Duan, F. Yang, T. Chen, and S. L. Shah, “Detection of direct causality based on process data,” in 2012 American Control Conference (ACC).   IEEE, 2012, pp. 3522–3527.
  93. J.-M. Dufour and A. Taamouti, “Short and long run causality measures: Theory and inference,” Journal of Econometrics, vol. 154, no. 1, pp. 42–58, 2010.
  94. V. A. Vakorin, O. A. Krakovska, and A. R. McIntosh, “Confounding effects of indirect connections on causality estimation,” Journal of neuroscience methods, vol. 184, no. 1, pp. 152–160, 2009.
  95. D. Koutsoyiannis, C. Onof, A. Christofides, and Z. W. Kundzewicz, “Revisiting causality using stochastics: 1. theory,” Proceedings of The Royal Society A, vol. 478, no. 2261, p. 20210835, 2022.
  96. J. Dul, “Necessary condition analysis (nca) logic and methodology of “necessary but not sufficient” causality,” Organizational Research Methods, vol. 19, no. 1, pp. 10–52, 2016.
  97. P. Petraitis, A. Dunham, and P. Niewiarowski, “Inferring multiple causality: the limitations of path analysis,” Functional ecology, pp. 421–431, 1996.
  98. J. Pearl, “Structural and probabilistic causality,” in Psychology of learning and motivation.   Elsevier, 1996, vol. 34, pp. 393–435.
  99. P. K. Tyagi and T. R. Wotruba, “An exploratory study of reverse causality relationships among sales force turnover variables,” Journal of the Academy of Marketing Science, vol. 21, pp. 143–153, 1993.
  100. F. C. Keil, “Explanation and understanding,” Annu. Rev. Psychol., vol. 57, pp. 227–254, 2006.
  101. S. Häggqvist, “Kinds, projectibility and explanation,” Croatian journal of philosophy, no. 13, pp. 71–87, 2005.
  102. N. Weinberger, “Intervening and letting go: On the adequacy of equilibrium causal models,” 2021. [Online]. Available: https://philsci-archive.pitt.edu/19558/
  103. W. D. Gunter and K. Daly, “Causal or spurious: Using propensity score matching to detangle the relationship between violent video games and violent behavior,” Computers in Human Behavior, vol. 28, no. 4, pp. 1348–1355, 2012.
  104. K. Imai, L. Keele, and D. Tingley, “A general approach to causal mediation analysis.” Psychological methods, vol. 15, no. 4, p. 309, 2010.
  105. A. D. Wu and B. D. Zumbo, “Understanding and using mediators and moderators,” Social Indicators Research, vol. 87, pp. 367–392, 2008.
  106. H. Álvarez-Martínez and E. Pérez-Campos, “Causality in medicine,” Gaceta médica de México, vol. 140, no. 4, pp. 467–472, 2004.
  107. M. A. Hernán and T. J. VanderWeele, “Compound treatments and transportability of causal inference,” Epidemiology (Cambridge, Mass.), vol. 22, no. 3, p. 368, 2011.
  108. M. Prosperi, Y. Guo, M. Sperrin, J. S. Koopman, J. S. Min, X. He, S. Rich, M. Wang, I. E. Buchan, and J. Bian, “Causal inference and counterfactual prediction in machine learning for actionable healthcare,” Nature Machine Intelligence, vol. 2, no. 7, pp. 369–375, 2020.
  109. M. R. Kosorok and E. B. Laber, “Precision medicine,” Annual review of statistics and its application, vol. 6, pp. 263–286, 2019.
  110. K. Hlaváčková-Schindler, M. Paluš, M. Vejmelka, and J. Bhattacharya, “Causality detection based on information-theoretic approaches in time series analysis,” Physics Reports, vol. 441, no. 1, pp. 1–46, 2007.
  111. V. A. Atanasov and B. S. Black, “Shock-based causal inference in corporate finance and accounting research,” Critical Finance Review, vol. 5, pp. 207–304, 2016.
  112. R. Moraffah, P. Sheth, M. Karami, A. Bhattacharya, Q. Wang, A. Tahir, A. Raglin, and H. Liu, “Causal inference for time series analysis: Problems, methods and evaluation,” Knowledge and Information Systems, vol. 63, pp. 3041–3085, 2021.
  113. I. D. Gow, D. F. Larcker, and P. C. Reiss, “Causal inference in accounting research,” Journal of Accounting Research, vol. 54, no. 2, pp. 477–523, 2016.
  114. M. J. Kusner, J. Loftus, C. Russell, and R. Silva, “Counterfactual fairness,” Advances in neural information processing systems, vol. 30, 2017.
  115. T. Zajonc, “Essays on causal inference for public policy,” Ph.D. dissertation, Harvard University, 2012.
  116. Y. Wang, D. Liang, L. Charlin, and D. M. Blei, “Causal inference for recommender systems,” in Proceedings of the 14th ACM Conference on Recommender Systems, 2020, pp. 426–431.
  117. Y. Vivek, V. Ravi, A. A. Mane, and L. R. Naidu, “Explainable artificial intelligence and causal inference based atm fraud detection,” arXiv preprint arXiv:2211.10595, 2022.
  118. S. C. Smith and S. Ramamoorthy, “Counterfactual explanation and causal inference in service of robustness in robot control,” in 2020 Joint IEEE 10th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob).   IEEE, 2020, pp. 1–8.
  119. J. Xu, K. Yin, J. M. Gregory, and L. Liu, “Causal inference for de-biasing motion estimation from robotic observational data,” in 2023 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2023, pp. 3008–3014.
  120. M. Gangl, “Causal inference in sociological research,” Annual review of sociology, vol. 36, pp. 21–47, 2010.
  121. H. R. Varian, “Causal inference in economics and marketing,” Proceedings of the National Academy of Sciences, vol. 113, no. 27, pp. 7310–7315, 2016.
  122. S. Abel, Y. Tang, J. Singh, and E. Paek, “Applications of causal modeling in cybersecurity: An exploratory approach,” Advances in Science, Technology and Engineering Systems Journal, vol. 5, no. 3, pp. 380–387, 2020.
  123. K. Kuang, L. Li, Z. Geng, L. Xu, K. Zhang, B. Liao, H. Huang, P. Ding, W. Miao, and Z. Jiang, “Causal inference,” Engineering, vol. 6, no. 3, pp. 253–263, 2020.
  124. M. Rohmatillah and J.-T. Chien, “Causal confusion reduction for robust multi-domain dialogue policy.” in Interspeech, 2021, pp. 3221–3225.
  125. P. Machamer, “Activities and causation: The metaphysics and epistemology of mechanisms,” International studies in the philosophy of science, vol. 18, no. 1, pp. 27–39, 2004.
  126. G. Young, K. Nicholson, A. W. Kane, G. Young, and A. W. Kane, “Causality in psychology and law,” Causality of psychological injury: Presenting evidence in court, pp. 13–47, 2007.
  127. M. M. Marini and B. Singer, “Causality in the social sciences,” Sociological methodology, vol. 18, pp. 347–409, 1988.
  128. J. Runge, P. Nowack, M. Kretschmer, S. Flaxman, and D. Sejdinovic, “Detecting and quantifying causal associations in large nonlinear time series datasets,” Science advances, vol. 5, no. 11, p. eaau4996, 2019.
  129. C. S. Khoo, S. Chan, and Y. Niu, “Extracting causal knowledge from a medical database using graphical patterns,” in Proceedings of the 38th annual meeting of the association for computational linguistics, 2000, pp. 336–343.
  130. A. Subbaswamy and S. Saria, “Counterfactual normalization: Proactively addressing dataset shift using causal mechanisms.” in UAI, 2018, pp. 947–957.
  131. Z. Zhang, J. Zhou, W. Cao, and J. Zhang, “Causal inference with a quantitative exposure,” Statistical methods in medical research, vol. 25, no. 1, pp. 315–335, 2016.
  132. G. A. Fox, “Practical causal inference for ecoepidemiologists,” Journal of Toxicology and Environmental Health, Part A Current Issues, vol. 33, no. 4, pp. 359–373, 1991.
  133. G. King, C. Lucas, and R. A. Nielsen, “The balance-sample size frontier in matching methods for causal inference,” American journal of political science, vol. 61, no. 2, pp. 473–489, 2017.
  134. K. M. Sheffield, N. A. Dreyer, J. F. Murray, D. E. Faries, and M. N. Klopchin, “Replication of randomized clinical trial results using real-world data: paving the way for effectiveness decisions,” Journal of Comparative Effectiveness Research, vol. 9, no. 15, pp. 1043–1050, 2020.
  135. J. M. Robins, R. Scheines, P. Spirtes, and L. Wasserman, “Uniform consistency in causal inference,” Biometrika, vol. 90, no. 3, pp. 491–515, 2003.
  136. R. S. Zimmermann, J. Borowski, R. Geirhos, M. Bethge, T. Wallis, and W. Brendel, “How well do feature visualizations support causal understanding of cnn activations?” Advances in Neural Information Processing Systems, vol. 34, pp. 11 730–11 744, 2021.
  137. A. L. Duckworth, E. Tsukayama, and H. May, “Establishing causality using longitudinal hierarchical linear modeling: An illustration predicting achievement from self-control,” Social psychological and personality science, vol. 1, no. 4, pp. 311–317, 2010.
  138. H. Liu, M. Chaudhary, and H. Wang, “Towards trustworthy and aligned machine learning: A data-centric survey with causality perspectives,” arXiv preprint arXiv:2307.16851, 2023.
  139. A. B. Arrieta, N. Díaz-Rodríguez, J. Del Ser, A. Bennetot, S. Tabik, A. Barbado, S. García, S. Gil-López, D. Molina, R. Benjamins et al., “Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges toward responsible ai,” Information fusion, vol. 58, pp. 82–115, 2020.
  140. D. Janzing, L. Minorics, and P. Blöbaum, “Feature relevance quantification in explainable ai: A causal problem,” in International Conference on artificial intelligence and statistics.   PMLR, 2020, pp. 2907–2916.
  141. M. Naser, “An engineer’s guide to explainable artificial intelligence and interpretable machine learning: Navigating causality, forced goodness, and the false perception of inference,” Automation in Construction, vol. 129, p. 103821, 2021.
  142. A. Holzinger, “Explainable ai and multi-modal causability in medicine,” i-com, vol. 19, no. 3, pp. 171–179, 2021.
  143. Y.-L. Chou, C. Moreira, P. Bruza, C. Ouyang, and J. Jorge, “Counterfactuals and causability in explainable artificial intelligence: Theory, algorithms, and applications,” Information Fusion, vol. 81, pp. 59–83, 2022.
  144. P. Madumal, T. Miller, L. Sonenberg, and F. Vetere, “Explainable reinforcement learning through a causal lens,” in Proceedings of the AAAI conference on artificial intelligence, vol. 34, no. 03, 2020, pp. 2493–2500.
  145. J. M. Bishop, “Artificial intelligence is stupid and causal reasoning will not fix it,” Frontiers in Psychology, vol. 11, p. 2603, 2021.
  146. T. J. Stewart, R. Janssen, and M. Van Herwijnen, “A genetic algorithm approach to multiobjective land use planning,” Computers & Operations Research, vol. 31, no. 14, pp. 2293–2313, 2004.
  147. Y. Demchenko, C. De Laat, and P. Membrey, “Defining architecture components of the big data ecosystem,” in 2014 International conference on collaboration technologies and systems (CTS).   IEEE, 2014, pp. 104–112.
  148. R. Guo, L. Cheng, J. Li, P. R. Hahn, and H. Liu, “A survey of learning causality with data: Problems and methods,” ACM Computing Surveys (CSUR), vol. 53, no. 4, pp. 1–37, 2020.
  149. F. Mannering, C. R. Bhat, V. Shankar, and M. Abdel-Aty, “Big data, traditional data and the tradeoffs between prediction and causality in highway-safety analysis,” Analytic methods in accident research, vol. 25, p. 100113, 2020.
  150. K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, “Deep reinforcement learning: A brief survey,” IEEE Signal Processing Magazine, vol. 34, no. 6, pp. 26–38, 2017.
  151. S. A. Sontakke, A. Mehrjou, L. Itti, and B. Schölkopf, “Causal curiosity: Rl agents discovering self-supervised experiments for causal representation learning,” in International conference on machine learning.   PMLR, 2021, pp. 9848–9858.
  152. S. J. Grimbly, J. Shock, and A. Pretorius, “Causal multi-agent reinforcement learning: Review and open problems,” arXiv preprint arXiv:2111.06721, 2021.
  153. Y. Lu, A. Meisami, and A. Tewari, “Efficient reinforcement learning with prior causal knowledge,” in Conference on Causal Learning and Reasoning.   PMLR, 2022, pp. 526–541.
  154. T. He, J. Gajcin, and I. Dusparic, “Causal counterfactuals for improving the robustness of reinforcement learning,” arXiv preprint arXiv:2211.05551, 2022.
  155. B. Schölkopf, “Causality for machine learning,” in Probabilistic and Causal Inference: The Works of Judea Pearl, 2022, pp. 765–804.
  156. V. Ramachandra, “Deep learning for causal inference,” arXiv preprint arXiv:1803.00149, 2018.
  157. D. Kalainathan, O. Goudet, and R. Dutta, “Causal discovery toolbox: Uncovering causal relationships in python,” The Journal of Machine Learning Research, vol. 21, no. 1, pp. 1406–1410, 2020.
  158. P. Sanchez, J. P. Voisey, T. Xia, H. I. Watson, A. Q. O’Neil, and S. A. Tsaftaris, “Causal machine learning for healthcare and precision medicine,” Royal Society Open Science, vol. 9, no. 8, p. 220638, 2022.
  159. P. Arora, D. Boyne, J. J. Slater, A. Gupta, D. R. Brenner, and M. J. Druzdzel, “Bayesian networks for risk prediction using real-world data: a tool for precision medicine,” Value in Health, vol. 22, no. 4, pp. 439–445, 2019.
  160. X. Dong, Z. Yu, W. Cao, Y. Shi, and Q. Ma, “A survey on ensemble learning,” Frontiers of Computer Science, vol. 14, pp. 241–258, 2020.
  161. M. Li, R. Zhang, and K. Liu, “A new ensemble learning algorithm combined with causal analysis for bayesian network structural learning,” Symmetry, vol. 12, no. 12, p. 2054, 2020.
  162. P. C. Austin, “Using ensemble-based methods for directly estimating causal effects: an investigation of tree-based g-computation,” Multivariate behavioral research, vol. 47, no. 1, pp. 115–135, 2012.
  163. J. Z. Liu, J. Paisley, M.-A. Kioumourtzoglou, and B. A. Coull, “Adaptive ensemble learning of spatiotemporal processes with calibrated predictive uncertainty: A bayesian nonparametric approach,” arXiv preprint arXiv:1904.00521, 2019.
  164. A. Mishler and E. Kennedy, “Fade: Fair double ensemble learning for observable and counterfactual outcomes,” arXiv preprint arXiv:2109.00173, 2021.
  165. N. Younas, A. Ali, H. Hina, M. Hamraz, Z. Khan, and S. Aldahmani, “Optimal causal decision trees ensemble for improved prediction and causal inference,” IEEE Access, vol. 10, pp. 13 000–13 011, 2022.
  166. K. Lee, F. J. Bargagli-Stoffi, and F. Dominici, “Causal rule ensemble: Interpretable inference of heterogeneous treatment effects,” arXiv preprint arXiv:2009.09036, 2020.
  167. F. J. Bargagli-Stoffi, R. Cadei, K. Lee, and F. Dominici, “Causal rule ensemble: Interpretable discovery and inference of heterogeneous causal effects,” arXiv preprint arXiv:2009.09036, 2020.
  168. T. Nayak, S. Sharma, Y. Butala, K. Dasgupta, P. Goyal, and N. Ganguly, “A generative approach for financial causality extraction,” in Companion Proceedings of the Web Conference 2022, 2022, pp. 576–578.
  169. O. Hassanzadeh, D. Bhattacharjya, M. Feblowitz, K. Srinivas, M. Perrone, S. Sohrabi, and M. Katz, “Answering binary causal questions through large-scale text mining: An evaluation using cause-effect pairs from human experts.” in IJCAI, 2019, pp. 5003–5009.
  170. A. Feder, K. A. Keith, E. Manzoor, R. Pryzant, D. Sridhar, Z. Wood-Doughty, J. Eisenstein, J. Grimmer, R. Reichart, M. E. Roberts et al., “Causal inference in natural language processing: Estimation, prediction, interpretation and beyond,” Transactions of the Association for Computational Linguistics, vol. 10, pp. 1138–1158, 2022.
  171. S. K. Sampat, P. Banerjee, Y. Yang, and C. Baral, “Learning action-effect dynamics for hypothetical vision-language reasoning task,” arXiv preprint arXiv:2212.03866, 2022.
  172. R. Moraffah, M. Karami, R. Guo, A. Raglin, and H. Liu, “Causal interpretability for machine learning-problems, methods and evaluation,” ACM SIGKDD Explorations Newsletter, vol. 22, no. 1, pp. 18–33, 2020.
  173. Y. Huang, Z. Fu, and C. L. Franzke, “Detecting causality from time series in a machine learning framework,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 30, no. 6, 2020.
  174. M. Li and K. Liu, “Causality-based attribute weighting via information flow and genetic algorithm for naive bayes classifier,” IEEE Access, vol. 7, pp. 150 630–150 641, 2019.
  175. I. Blecic, A. Cecchini, and G. A. Trunfio, “A decision support tool coupling a causal model and a multi-objective genetic algorithm,” Applied Intelligence, vol. 26, pp. 125–137, 2007.
  176. L. M. de Campos and J. F. Huete, “Approximating causal orderings for bayesian networks using genetic algorithms and simulated annealing,” in Proceedings of the Eighth IPMU Conference, vol. 1, no. 2000, 2000.
  177. T. Deleu, A. Góis, C. Emezue, M. Rankawat, S. Lacoste-Julien, S. Bauer, and Y. Bengio, “Bayesian structure learning with generative flow networks,” in Uncertainty in Artificial Intelligence.   PMLR, 2022, pp. 518–528.
  178. N. Pawlowski, D. Coelho de Castro, and B. Glocker, “Deep structural causal models for tractable counterfactual inference,” Advances in Neural Information Processing Systems, vol. 33, pp. 857–869, 2020.
  179. P. Darondeau and P. Degano, “Causal trees,” in International Colloquium on Automata, Languages, and Programming.   Springer, 1989, pp. 234–248.
  180. M. Kocaoglu, C. Snyder, A. G. Dimakis, and S. Vishwanath, “Causalgan: Learning causal implicit generative models with adversarial training,” arXiv preprint arXiv:1709.02023, 2017.
  181. I. Shpitser and J. Pearl, “Identification of joint interventional distributions in recursive semi-markovian causal models,” in Proceedings of the National Conference on Artificial Intelligence, vol. 21, no. 2.   Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2006, p. 1219.
  182. M. Yang, F. Liu, Z. Chen, X. Shen, J. Hao, and J. Wang, “Causalvae: Disentangled representation learning via neural structural causal models,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2021, pp. 9593–9602.
  183. G. Wunsch, F. Russo, and M. Mouchart, “Do we necessarily need longitudinal data to infer causal relations?” Bulletin of Sociological Methodology/Bulletin de Méthodologie Sociologique, vol. 106, no. 1, pp. 5–18, 2010.
  184. J. Berrevoets, K. Kacprzyk, Z. Qian, and M. van der Schaar, “Causal deep learning,” arXiv preprint arXiv:2303.02186, 2023.
  185. D. Heckerman, “A bayesian approach to learning causal networks,” arXiv preprint arXiv:1302.4958, 2013.
  186. L. Lei and E. J. Candès, “Conformal inference of counterfactuals and individual treatment effects,” Journal of the Royal Statistical Society Series B: Statistical Methodology, vol. 83, no. 5, pp. 911–938, 2021.
  187. P. Bühlmann, J. Peters, and J. Ernest, “Cam: Causal additive models, high-dimensional order search and penalized regression,” The Annals of Statistics, 2014.
  188. V. Balazadeh Meresht, V. Syrgkanis, and R. G. Krishnan, “Partial identification of treatment effects with implicit generative models,” Advances in Neural Information Processing Systems, vol. 35, pp. 22 816–22 829, 2022.
  189. C. Louizos, U. Shalit, J. M. Mooij, D. Sontag, R. Zemel, and M. Welling, “Causal effect inference with deep latent-variable models,” Advances in neural information processing systems, vol. 30, 2017.
  190. Y. Luo, J. Peng, and J. Ma, “When causal inference meets deep learning,” Nature Machine Intelligence, vol. 2, no. 8, pp. 426–427, 2020.
  191. H. Kim, S. Shin, J. Jang, K. Song, W. Joo, W. Kang, and I.-C. Moon, “Counterfactual fairness with disentangled causal effect variational autoencoder,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 9, 2021, pp. 8128–8136.
  192. V. Terziyan and O. Vitko, “Causality-aware convolutional neural networks for advanced image classification and generation,” Procedia Computer Science, vol. 217, pp. 495–506, 2023.
  193. Y. Wang, “Fuzzy causal inferences based on fuzzy semantics of fuzzy concepts in cognitive computing,” WSEAS Transactions on Computers, vol. 13, pp. 430–441, 2014.
  194. H. S. Kim and K. C. Lee, “Fuzzy implications of fuzzy cognitive map with emphasis on fuzzy causal relationship and fuzzy partially causal relationship,” Fuzzy Sets and Systems, vol. 97, no. 3, pp. 303–313, 1998.
  195. Y. Miao and Z.-Q. Liu, “On causal inference in fuzzy cognitive maps,” IEEE transactions on Fuzzy Systems, vol. 8, no. 1, pp. 107–119, 2000.
  196. Q. Zhang and W. J. Doll, “The fuzzy front end and success of new product development: a causal model,” European Journal of Innovation Management, vol. 4, no. 2, pp. 95–112, 2001.
  197. W. Chen, “A quantitative fuzzy causal model for hazard analysis of man–machine-environment system,” Safety science, vol. 62, pp. 475–482, 2014.
  198. C.-J. Lin and W.-W. Wu, “A causal analytical method for group decision-making under fuzzy environment,” Expert systems with applications, vol. 34, no. 1, pp. 205–213, 2008.
  199. B. Kosko, “Fuzzy cognitive maps,” International journal of man-machine studies, vol. 24, no. 1, pp. 65–75, 1986.

Summary

We haven't generated a summary for this paper yet.