All-thermal reversal of heat currents using qutrits (2403.11160v2)
Abstract: Few-level systems coupled to thermal baths provide useful models for quantum thermodynamics and to understand the role of heat currents in quantum information settings. Useful operations such as cooling or thermal masers have been proposed in autonomous three-level systems. In this work, we propose the coherent coupling of two qutrits as a simultaneous refrigerator and heat pump of two reservoirs forming a system. This occurs thanks to the coupling to two other reservoirs which are out of equilibrium but do not inject heat in the system. We explore the thermodynamic performance of such operation and discuss whether it can be distinguished from the action of a Maxwell demon via measurements of current fluctuations limited to the working substance.
- J. P. Pekola and B. Karimi, Colloquium: Quantum heat transport in condensed matter systems, Rev. Mod. Phys. 93, 041001 (2021).
- H. E. D. Scovil and E. O. Schulz-DuBois, Three-level masers as heat engines, Phys. Rev. Lett. 2, 262–263 (1959).
- J. E. Geusic, E. O. Schulz-DuBois, and H. E. D. Scovil, Quantum equivalent of the Carnot cycle, Phys. Rev. 156, 343 (1967).
- R. Alicki, The quantum open system as a model of the heat engine, J. Phys. A: Math. Gen. 12, L103 (1979).
- R. Kosloff, A quantum mechanical open system as a model of a heat engine, J. Chem. Phys. 80, 1625–1631 (1984).
- E. Geva and R. Kosloff, Three-level quantum amplifier as a heat engine: A study in finite-time thermodynamics, Phys. Rev. E 49, 3903–3918 (1994).
- E. Geva and R. Kosloff, The quantum heat engine and heat pump: An irreversible thermodynamic analysis of the three-level amplifier, J. Chem. Phys. 104, 7681–7699 (1996).
- E. Boukobza and D. J. Tannor, Three-level systems as amplifiers and attenuators: A thermodynamic analysis, Phys. Rev. Lett. 98, 240601 (2007).
- J. P. Palao, R. Kosloff, and J. M. Gordon, Quantum thermodynamic cooling cycle, Phys. Rev. E 64, 056130 (2001).
- N. Linden, S. Popescu, and P. Skrzypczyk, How small can thermal machines be? the smallest possible refrigerator, Phys. Rev. Lett. 105, 130401 (2010).
- A. Levy and R. Kosloff, Quantum absorption refrigerator, Phys. Rev. Lett. 108, 070604 (2012).
- R. Kosloff and A. Levy, Quantum heat engines and refrigerators: Continuous devices, Annu. Rev. Phys. Chem. 65, 365 (2014).
- N. M. Myers, O. Abah, and S. Deffner, Quantum thermodynamic devices: From theoretical proposals to experimental reality, AVS Quantum Sci. 4, 027101 (2022).
- L. Arrachea, Energy dynamics, heat production and heat–work conversion with qubits: toward the development of quantum machines, Rep. Prog. Phys. 86, 036501 (2023).
- L. M. Cangemi, C. Bhadra, and A. Levy, Quantum Engines and Refrigerators, arXiv:2302.00726 (2023).
- T. Ojanen and A.-P. Jauho, Mesoscopic photon heat transistor, Phys. Rev. Lett. 100, 155902 (2008).
- D. Segal and A. Nitzan, Spin-boson thermal rectifier, Phys. Rev. Lett. 94, 034301 (2005).
- T. Ojanen, Selection-rule blockade and rectification in quantum heat transport, Phys. Rev. B 80, 180301 (2009).
- B.-q. Guo, T. Liu, and C.-s. Yu, Quantum thermal transistor based on qubit-qutrit coupling, Phys. Rev. E 98, 022118 (2018).
- M. Xu, J. T. Stockburger, and J. Ankerhold, Heat transport through a superconducting artificial atom, Phys. Rev. B 103, 104304 (2021).
- I. Díaz and R. Sánchez, The qutrit as a heat diode and circulator, New J. Phys. 23, 125006 (2021).
- H.-J. Cao, F. Li, and S.-W. Li, Quantum refrigerator driven by nonclassical light, Phys. Rev. Res. 4, 043158 (2022).
- L. Szilard, Über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen, Z. Phys. 53, 840 (1929).
- R. Landauer, Irreversibility and heat generation in the computing process, IBM J. Res. Dev. 5, 183 (1961).
- C. H. Bennett, The thermodynamics of computation—a review, Int. J. Theor. Phys. 21, 905 (1982).
- K. Maruyama, F. Nori, and V. Vedral, Colloquium: The physics of Maxwell’s demon and information, Rev. Mod. Phys. 81, 1 (2009).
- J. M. R. Parrondo, J. M. Horowitz, and T. Sagawa, Thermodynamics of information, Nat. Phys. 11, 131 (2015).
- J. P. Pekola, Towards quantum thermodynamics in electronic circuits, Nat. Phys. 11, 118 (2015).
- R. S. Whitney, Illusory cracks in the second law of thermodynamics in quantum nanoelectronics, arXiv:2304.03106 (2023).
- S. Lloyd, Quantum-mechanical Maxwell’s demon, Phys. Rev. A 56, 3374–3382 (1997).
- D. V. Averin, M. Möttönen, and J. P. Pekola, Maxwell’s demon based on a single-electron pump, Phys. Rev. B 84, 245448 (2011).
- R. Sánchez and M. Büttiker, Optimal energy quanta to current conversion, Phys. Rev. B 83, 085428 (2011).
- R. Sánchez and M. Büttiker, Detection of single-electron heat transfer statistics, EPL 100, 47008 (2012).
- J. M. Horowitz and M. Esposito, Thermodynamics with continuous information flow, Phys. Rev. X 4, 031015 (2014).
- K. Ptaszyński, Autonomous quantum Maxwell’s demon based on two exchange-coupled quantum dots, Phys. Rev. E 97, 012116 (2018).
- B. Bhandari and A. N. Jordan, Minimal two-body quantum absorption refrigerator, Phys. Rev. B 104, 075442 (2021).
- R. Sánchez, J. Splettstoesser, and R. S. Whitney, Nonequilibrium system as a demon, Phys. Rev. Lett. 123, 216801 (2019a).
- K. Ptaszyński and M. Esposito, Thermodynamics of quantum information flows, Phys. Rev. Lett. 122, 150603 (2019).
- R. Sánchez, P. Samuelsson, and P. P. Potts, Autonomous conversion of information to work in quantum dots, Phys. Rev. Research 1, 033066 (2019b).
- S. E. Deghi and R. A. Bustos-Marún, Entropy current and efficiency of quantum machines driven by nonequilibrium incoherent reservoirs, Phys. Rev. B 102, 045415 (2020).
- S. Ciliberto, Autonomous out-of-equilibrium Maxwell’s demon for controlling the energy fluxes produced by thermal fluctuations, Phys. Rev. E 102, 050103 (2020).
- N. Freitas and M. Esposito, Characterizing autonomous Maxwell demons, Phys. Rev. E 103, 032118 (2021).
- N. Freitas and M. Esposito, Maxwell demon that can work at macroscopic scales, Phys. Rev. Lett. 129, 120602 (2022).
- L. S. Levitov and G. B. Lesovik, Charge distribution in quantum shot noise, Soviet Journal of Experimental and Theoretical Physics Letters 58, 230 (1993).
- L. S. Levitov, H. Lee, and G. B. Lesovik, Electron counting statistics and coherent states of electric current, J. Math. Phys. 37, 4845–4866 (1996).
- Y. V. Nazarov, ed., Quantum Noise in Mesoscopic Physics (Springer Netherlands, Dordrecht, The Netherlands, 2003).
- D. A. Bagrets and Y. V. Nazarov, Full counting statistics of charge transfer in Coulomb blockade systems, Phys. Rev. B 67, 085316 (2003).
- F. J. Kaiser and S. Kohler, Shot noise in non-adiabatically driven nanoscale conductors, Ann. Phys. 519, 702–719 (2007).
- D. Segal, Current fluctuations in quantum absorption refrigerators, Phys. Rev. E 97, 052145 (2018).
- H. M. Friedman, B. K. Agarwalla, and D. Segal, Quantum energy exchange and refrigeration: a full-counting statistics approach, New J. Phys. 20, 083026 (2018).
- R. Sánchez, G. Platero, and T. Brandes, Resonance fluorescence in transport through quantum dots: Noise properties, Phys. Rev. Lett. 98, 146805 (2007).
- R. Sánchez, G. Platero, and T. Brandes, Resonance fluorescence in driven quantum dots: Electron and photon correlations, Phys. Rev. B 78, 125308 (2008a).
- T. Krause, G. Schaller, and T. Brandes, Incomplete current fluctuation theorems for a four-terminal model, Phys. Rev. B 84, 195113 (2011).
- L. Tesser, R. S. Whitney, and J. Splettstoesser, Thermodynamic performance of hot-carrier solar cells: A quantum transport model, Phys. Rev. Appl. 19, 044038 (2023).
- A. C. Barato and U. Seifert, Thermodynamic uncertainty relation for biomolecular processes, Phys. Rev. Lett. 114, 158101 (2015).
- J. M. Horowitz and T. R. Gingrich, Thermodynamic uncertainty relations constrain non-equilibrium fluctuations, Nat. Phys. 16, 15–20 (2020).
- M. Cattaneo and G. S. Paraoanu, Engineering Dissipation with Resistive Elements in Circuit Quantum Electrodynamics, Adv. Quantum Technol. 4, 2100054 (2021).
- D. Segal and A. Nitzan, Molecular heat pump, Phys. Rev. E 73, 026109 (2006).
- O. Abah and E. Lutz, Optimal performance of a quantum Otto refrigerator, Europhys. Lett. 113, 60002 (2016).
- B. Karimi and J. P. Pekola, Otto refrigerator based on a superconducting qubit: Classical and quantum performance, Phys. Rev. B 94, 184503 (2016).
- I. A. Picatoste, A. Colla, and H.-P. Breuer, Dynamically emergent quantum thermodynamics: Non-Markovian Otto cycle, Phys. Rev. Res. 6, 013258 (2024).
- H.-P. Breuer and F. Petruccione, The theory of open quantum systems (Oxford University Press, 2002).
- O. Entin-Wohlman, Y. Imry, and A. Aharony, Enhanced performance of joint cooling and energy production, Phys. Rev. B 91, 054302 (2015).
- R. López, J. S. Lim, and K. W. Kim, Optimal superconducting hybrid machine, Phys. Rev. Res. 5, 013038 (2023).
- K. Hammam, G. Manzano, and G. De Chiara, Quantum coherence enables hybrid multitask and multisource regimes in autonomous thermal machines, arXiv:2308.16080 (2023).
- J.-H. Jiang, Enhancing efficiency and power of quantum-dots resonant tunneling thermoelectrics in three-terminal geometry by cooperative effects, J. Appl. Phys. 116, 194303 (2014).
- P. Strasberg, M. G. Díaz, and A. Riera-Campeny, Clausius inequality for finite baths reveals universal efficiency improvements, Phys. Rev. E 104, L022103 (2021).
- B. K. Agarwalla and D. Segal, Assessing the validity of the thermodynamic uncertainty relation in quantum systems, Phys. Rev. B 98, 155438 (2018).
- A. A. S. Kalaee, A. Wacker, and P. P. Potts, Violating the thermodynamic uncertainty relation in the three-level maser, Phys. Rev. E 104, L012103 (2021).
- A. Dechant, Multidimensional thermodynamic uncertainty relations, J. Phys. A: Math. Theor. 52, 035001 (2018).
- A. Cottet, W. Belzig, and C. Bruder, Positive cross correlations in a three-terminal quantum dot with ferromagnetic contacts, Phys. Rev. Lett. 92, 206801 (2004).
- M. Smoluchowski, Experimentell nachweisbare, der üblichten Thermodynamik widersprechende Molekularphänomene, Phys. Z. 13, 1069 (1912).
- R. Sánchez, S. Kohler, and G. Platero, Spin correlations in spin blockade, New J. Phys. 10, 115013 (2008).
- R. Hussein and S. Kohler, Coherent quantum ratchets driven by tunnel oscillations: Fluctuations and correlations, Phys. Rev. B 86, 115452 (2012).
- G. Schaller, Open Quantum Systems Far from Equilibrium (Springer, Cham, Switzerland, 2014).
Collections
Sign up for free to add this paper to one or more collections.