Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhanced Index Modulation Aided Non-Orthogonal Multiple Access via Constellation Rotation (2403.11081v1)

Published 17 Mar 2024 in cs.IT, cs.NI, eess.SP, and math.IT

Abstract: Non-orthogonal multiple access (NOMA) has been widely nominated as an emerging spectral efficiency (SE) multiple access technique for the next generation of wireless communication network. To meet the growing demands in massive connectivity and huge data in transmission, a novel index modulation aided NOMA with the rotation of signal constellation of low power users (IM-NOMA-RC) is developed to the downlink transmission. In the proposed IM-NOMA-RC system, the users are classified into far-user group and near-user group according to their channel conditions, where the rotation constellation based IM operation is performed only on the users who belong to the near-user group that are allocated lower power compared with the far ones to transmit extra information. In the proposed IM-NOMA-RC, all the subcarriers are activated to transmit information to multiple users to achieve higher SE. With the aid of the multiple dimension modulation in IM-NOMA-RC, more users can be supported over an orthogonal resource block. Then, both maximum likelihood (ML) detector and successive interference cancellation (SIC) detector are studied for all the user. Numerical simulation results of the proposed IM-NOMARC scheme are investigate for the ML detector and the SIC detector for each users, which shows that proposed scheme can outperform conventional NOMA.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (41)
  1. Z. Ding, X. Lei, G. K. Karagiannidis, R. Schober, J. Yuan, and V. K. Bhargava, “A survey on non-orthogonal multiple access for 5G networks: Research challenges and future trends,” IEEE J. Sel. Areas Commun., vol. 35, no. 10, pp. 2181–2195, 2017.
  2. M. Z. Chowdhury, M. Shahjalal, S. Ahmed, and Y. M. Jang, “6G wireless communication systems: Applications, requirements, technologies, challenges, and research directions,” IEEE Open J. Commun. Soc., vol. 1, pp. 957–975, 2020.
  3. P. Yang, Y. Xiao, M. Xiao, and S. Li, “6G wireless communications: Vision and potential techniques,” IEEE Netw., vol. 33, no. 4, pp. 70–75, 2019.
  4. D. Wan, M. Wen, F. Ji, H. Yu, and F. Chen, “Non-orthogonal multiple access for cooperative communications: Challenges, opportunities, and trends,” IEEE Wireless Commun., vol. 25, no. 2, pp. 109–117, 2018.
  5. L. Dai, B. Wang, Y. Yuan, S. Han, I. Chih-lin, and Z. Wang, “Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends,” IEEE Commun. Mag., vol. 53, no. 9, pp. 74–81, 2015.
  6. X. Yue, M. Song, C. Ouyang, Y. Liu, T. Li, and T. Hou, “Exploiting active RIS in NOMA networks with hardware impairments,” IEEE Trans. Veh. Technol., p. to be published, 2024.
  7. D. Wan, M. Wen, F. Ji, Y. Liu, and Y. Huang, “Cooperative NOMA systems with partial channel state information over nakagami- m𝑚mitalic_m fading channels,” IEEE Trans. Commun., vol. 66, no. 3, pp. 947–958, 2018.
  8. X. Pei, Y. Chen, M. Wen, H. Yu, E. Panayirci, and H. V. Poor, “Next-generation multiple access based on NOMA with power level modulation,” IEEE J. Sel. Areas Commun., vol. 40, no. 4, pp. 1072–1083, 2022.
  9. X. Liu, X. Wang, and Y. Liu, “Power allocation and performance analysis of the collaborative NOMA assisted relaying systems in 5G,” China Commun., vol. 14, no. 1, pp. 50–60, 2017.
  10. Z. Ding, Z. Yang, P. Fan, and H. V. Poor, “On the performance of nonorthogonal multiple access in 5G systems with randomly deployed users,” IEEE Signal Process. Lett., vol. 21, no. 12, pp. 1501–1505, 2014.
  11. L. Dai, B. Wang, Z. Ding, Z. Wang, S. Chen, and L. Hanzo, “A survey of non-orthogonal multiple access for 5G,” IEEE Commun. Surveys Tuts., vol. 20, no. 3, pp. 2294–2323, 2018.
  12. D. Wan, M. Wen, F. Ji, H. Yu, and F. Chen, “On the achievable sum-rate of NOMA-based diamond relay networks,” IEEE Trans. Veh. Technol., vol. 68, no. 2, pp. 1472–1486, 2019.
  13. T. Hou, Y. Liu, Z. Song, X. Sun, Y. Chen, and L. Hanzo, “Reconfigurable intelligent surface aided NOMA networks,” IEEE J. Sel. Areas Commun., vol. 38, no. 11, pp. 2575–2588, 2020.
  14. J. Li, Z. Song, T. Hou, J. Gao, A. Li, and Z. Tang, “An RIS-aided interference mitigation-based design for MIMO-NOMA in cellular networks,” IEEE Transactions on Green Communications and Networking, vol. 8, no. 1, pp. 317–329, 2024.
  15. T. Hou and A. Li, “Performance analysis of NOMA-RIS aided integrated navigation and communication (INAC) networks,” IEEE Trans. Veh. Technol., vol. 72, no. 10, pp. 13 255–13 268, 2023.
  16. J. Zhang, X. Wang, T. Hasegawa, and T. Kubo, “Downlink non-orthogonal multiple access (NOMA) constellation rotation,” in 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall), 2016, pp. 1–5.
  17. S. M. R. Islam, N. Avazov, O. A. Dobre, and K.-s. Kwak, “Power-domain non-orthogonal multiple access (NOMA) in 5G systems: Potentials and challenges,” IEEE Commun. Surveys Tuts., vol. 19, no. 2, pp. 721–742, 2017.
  18. A. Almohamad, M. Hasna, S. Althunibat, S. Özyurt, and K. Qaraqe, “Low complexity constellation rotation-based SIC detection for IM-NOMA schemes,” in 2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall), 2020, pp. 1–5.
  19. J. Li, S. Dang, M. Wen, Q. Li, Y. Chen, Y. Huang, and W. Shang, “Index modulation multiple access for 6G communications: Principles, applications, and challenges,” IEEE Netw., vol. 37, no. 1, pp. 52–60, 2023.
  20. E. Basar, “Index modulation techniques for 5G wireless networks,” IEEE Commun. Mag., vol. 54, no. 7, pp. 168–175, Jul. 2016.
  21. M. Wen, S. Lin, K. J. Kim, and F. Ji, “Cyclic delay diversity with index modulation for green internet of things,” IEEE Trans. Green Commun. Netw., vol. 5, no. 2, pp. 600–610, 2021.
  22. E. Basar, M. Wen, R. Mesleh, M. D. Renzo, Y. Xiao, and H. Haas, “Index modulation techniques for next-generation wireless networks,” IEEE Access, vol. 5, pp. 16 693–16 746, Aug. 2017.
  23. J. Li, S. Dang, M. Wen, X.-Q. Jiang, Y. Peng, and H. Hai, “Layered orthogonal frequency division multiplexing with index modulation,” IEEE Syst. J., vol. 13, no. 4, pp. 3793–3802, 2019.
  24. P. Yang, M. D. Renzo, Y. Xiao, S. Li, and L. Hanzo, “Design guidelines for spatial modulation,” IEEE Commun. Surveys Tuts., vol. 17, no. 1, pp. 6–26, First quarter 2015.
  25. M. Wen, B. Zheng, K. J. Kim, M. Di Renzo, T. A. Tsiftsis, K.-C. Chen, and N. Al-Dhahir, “A survey on spatial modulation in emerging wireless systems: Research progresses and applications,” IEEE J. Sel. Areas Commun., vol. 37, no. 9, pp. 1949–1972, 2019.
  26. J. Li, M. Wen, X. Cheng, Y. Yan, S. Song, and M. H. Lee, “Generalized precoding-aided quadrature spatial modulation,” IEEE Trans. Veh. Technol., vol. 66, no. 2, pp. 1881–1886, 2017.
  27. H. Qing, H. Yu, Y. Liu, and M. Wen, “Enhanced spatial modulation with generalized antenna selection in MISO channels,” IET Commun., vol. 15, no. 16, pp. 2046–2053, 2021.
  28. J. Li, Q. Li, S. Dang, M. Wen, X.-Q. Jiang, and Y. Peng, “Low-complexity detection for index modulation multiple access,” IEEE Wireless Commun. Lett., vol. 9, no. 7, pp. 943–947, 2020.
  29. E. Basar, U. Aygolu, E. Panayirci, and H. V. Poor, “Orthogonal frequency division multiplexing with index modulation,” IEEE Trans. Signal Process., vol. 61, no. 22, pp. 5536–5549, Nov. 2013.
  30. Q. Li, M. Wen, B. Clerckx, S. Mumtaz, A. Al-Dulaimi, and R. Q. Hu, “Subcarrier index modulation for future wireless networks: Principles, applications, and challenges,” IEEE Wireless Commun., vol. 27, no. 3, pp. 118–125, 2020.
  31. M. Wen, X. Cheng, M. Ma, B. Jiao, and H. V. Poor, “On the achievable rate of OFDM with index modulation,” IEEE Trans. Signal Process., vol. 64, no. 8, pp. 1919–1932, Apr. 2016.
  32. Q. Li, M. Wen, E. Basar, and F. Chen, “Index modulated ofdm spread spectrum,” IEEE Trans. Wireless Commun., vol. 17, no. 4, pp. 2360–2374, 2018.
  33. J. Li, Y. Peng, Y. Yan, X.-Q. Jiang, H. Hai, and M. Zukerman, “Cognitive radio network assisted by ofdm with index modulation,” IEEE Trans. Veh. Technol., vol. 69, no. 1, pp. 1106–1110, 2020.
  34. B. Zheng, F. Chen, M. Wen, F. Ji, H. Yu, and Y. Liu, “Low-complexity ML detector and performance analysis for OFDM with in-phase/quadrature index modulation,” IEEE Commun. Lett., vol. 19, no. 11, pp. 1893–1896, Nov. 2015.
  35. M. Wen, B. Ye, E. Basar, Q. Li, and F. Ji, “Enhanced orthogonal frequency division multiplexing with index modulation,” IEEE Trans. Wireless Commun., vol. 16, no. 7, pp. 4786–4801, 2017.
  36. Z. Hu, J. Yang, P. Guo, and Q. Li, “Orthogonal frequency division multiplexing with cascade index modulation,” IET Commun., vol. 16, no. 10, pp. 1057–1070, 2022.
  37. A. Almohamad, M. O. Hasna, S. Althunibat, and K. Qaraqe, “A novel downlink IM-NOMA scheme,” IEEE Open J. Commun. Soc., vol. 2, pp. 235–244, 2021.
  38. M. H. Kumar, S. Sharma, and M. Thottappan, “Downlink index modulation aided NOMA for MIMO transmission,” in 2020 IEEE 3rd 5G World Forum (5GWF), 2020, pp. 530–535.
  39. Q. Li, M. Wen, E. Basar, H. V. Poor, and F. Chen, “Spatial modulation-aided cooperative NOMA: Performance analysis and comparative study,” EEE J. Sel. Topics Signal Process., vol. 13, no. 3, pp. 715–728, 2019.
  40. J. Li, S. Dang, Y. Yan, Y. Peng, S. Al-Rubaye, and A. Tsourdos, “Generalized quadrature spatial modulation and its application to vehicular networks with NOMA,” IEEE Trans. Intell. Transp. Syst., vol. 22, no. 7, pp. 4030–4039, 2021.
  41. S. Sabud and P. Kumar, “A low complexity two-stage LLR detector for downlink OFDM-IM NOMA,” IEEE Commun. Lett., vol. 26, no. 10, pp. 2247–2251, 2022.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com