Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computational Seismic Fracture Synthesis of Tidal Barrage using Enhanced Isotropic Plasticity Damage Mechanics and Coupled Lagrangian-Eulerian Multiphase Interaction (2403.10905v1)

Published 16 Mar 2024 in physics.flu-dyn, cs.NA, math.DS, and math.NA

Abstract: Mega-engineered hydraulic structures like dams and barrages are critically sensitive to strong ground motion if constructed within the vicinity of triggered fault lines. Collapse post excessive deformation leads to severe environmental impact. In this study, fracture corresponding to the response of a concrete tidal barrage to strong ground motion is analyzed along with behavioral effects due to reservoir-barrage dynamic interaction. An enhanced version of the plasticity damage mechanical model, which includes effects due to degradation of elastic stiffness of concrete as well as restoration of fracture energy losses is assigned as material behavior. The fluid-structure interaction is solved using an idealized Lagrangian-Eulerian formulation. The proposed improvised numerical formulations are validated against benchmark simulations performed on the Koyna dam situated in Maharashtra, India and the results captured are upto 94% accurate. Finite element simulation of a tidal barrage is performed using a computationally stable mesh with global grid to length ratio of 4.2. The yield surface captured is elliptical in nature and fracture is observed to be propagating from bottom of gate housing covering upto four nodal integration points.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. An added-mass partition algorithm for fluid–structure interactions of compressible fluids and nonlinear solids. Journal of Computational Physics 305, 1037–1064. doi:10.1016/J.JCP.2015.10.043.
  2. MECHANICS OF FRACTURE AND PROGRESSIVE CRACKING IN CONCRETE STRUCTURES. Fract Mech of Concr, Struct Appl and Numer Calc , 1–94URL: https://link.springer.com/chapter/10.1007/978-94-009-6152-4{_}1, doi:10.1007/978-94-009-6152-4_1/COVER.
  3. Earthquake Analysis of Dam Floodgate Using Calibrated Added Mass. Journal of the Earthquake Engineering Society of Korea 13, 31–40. doi:10.5000/EESK.2009.13.5.031.
  4. The wedge splitting test, a new method of performing stable fracture mechanics tests. Engineering Fracture Mechanics 35, 117–125. doi:10.1016/0013-7944(90)90189-N.
  5. Seismic fracture analysis of concrete gravity dams including dam–reservoir interaction. Computers & Structures 83, 1595–1606. doi:10.1016/J.COMPSTRUC.2005.02.003.
  6. Smeared crack approach: back to the original track. International Journal for Numerical and Analytical Methods in Geomechanics 30, 1173–1199. doi:10.1002/NAG.518.
  7. Effects of yield surface shape and round-off vertex on crack-tip fields for pressure-sensitive materials. International Journal of Solids and Structures 34, 3291–3320. doi:10.1016/S0020-7683(96)00191-6.
  8. The Koyna earthquake and the damage to Koyna Dam. Bulletin of the Seismological Society of America 63, 381–397. doi:10.1785/BSSA0630020381.
  9. The Gujarat (India) Seismic Network. Seismological Research Letters 79, 806–815. doi:10.1785/GSSRL.79.6.806.
  10. Numerical solution of the Navier-Stokes equations. Mathematics of Computation 22, 745–762. doi:10.1090/S0025-5718-1968-0242392-2.
  11. A review of seismic hazard assessment of Gujarat: A highly active intra-plate region. Earth-Science Reviews 187, 205–218. doi:10.1016/J.EARSCIREV.2018.09.014.
  12. A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations. Nonlinear Dynamics 2002 29:1 29, 3–22. doi:10.1023/A:1016592219341.
  13. Stability properties of the Newmark, Houbolt and Wilson θ𝜃\thetaitalic_θ methods. International Journal for Numerical and Analytical Methods in Geomechanics 4, 143–158. doi:10.1002/NAG.1610040205.
  14. CDPM2: A damage-plasticity approach to modelling the failure of concrete. International Journal of Solids and Structures 50, 3805–3816. doi:10.1016/J.IJSOLSTR.2013.07.008, arXiv:1307.6998.
  15. Simplified Damage Plasticity Model for Concrete. https://doi.org/10.2749/101686616X1081 27, 68–78. doi:10.2749/101686616X1081.
  16. The dynamic and earthquake behaviour of concrete dams: review of experimental behaviour and observational evidence. Soil Dynamics and Earthquake Engineering 7, 58–121. doi:10.1016/S0267-7261(88)80001-0.
  17. The character of high-frequency strong ground motion. Bulletin of the Seismological Society of America 71, 2071–2095. doi:10.1785/BSSA0710062071.
  18. The theoretical basis of a method to determine the fracture energyG F of concrete. Materials and Structures 1985 18:4 18, 291–296. doi:10.1007/BF02472919.
  19. A lagrangian method for calculating the dynamics of an incompressible fluid with free surface. Journal of Computational Physics 5, 103–124. doi:10.1016/0021-9991(70)90055-0.
  20. Coastal reservoir strategy to enhance India’s freshwater storage by impounding river flood waters: a detailed overview. Water Supply 19, 703–717. doi:10.2166/WS.2018.140.
  21. An arbitrary Lagrangian Eulerian finite-element approach for fluid–structure interaction phenomena. International Journal for Numerical Methods in Engineering 57, 117–142. doi:10.1002/NME.749.
  22. Effects of element distortions on the performance of isoparametric elements. International Journal for Numerical Methods in Engineering 36, 3553–3576. doi:10.1002/NME.1620362009.
  23. Experimental investigation on nonlinear dynamic response of concrete gravity dam-reservoir system. Engineering Structures 80, 289–297. doi:10.1016/J.ENGSTRUCT.2014.09.017.
  24. Reassessment of tidal energy potential in India and a decision-making tool for tidal energy technology selection:. http://dx.doi.org/10.1177/1759313117694629 8, 85–97. doi:10.1177/1759313117694629.
  25. Seismotectonics of the Himalayan Collision Zone: Geometry of the underthrusting Indian Plate beneath the Himalaya. Journal of Geophysical Research: Solid Earth 89, 1147–1163. doi:10.1029/JB089IB02P01147.
  26. Seismic Cracking of Concrete Gravity Dams. Journal of the Structural Division 102, 1827–1844. doi:10.1061/JSDEAG.0004432.
  27. Multi-scale dynamic fracture model for quasi-brittle materials. International Journal of Engineering Science 61, 3–9. doi:10.1016/J.IJENGSCI.2012.06.004.
  28. Tensile Tests and Failure Analysis of Concrete. Journal of Structural Engineering 112, 2462–2477. doi:10.1061/(ASCE)0733-9445(1986)112:11(2462).
  29. Efficacy of coastal reservoirs to address India’s water shortage by impounding excess river flood waters near the coast. Journal of Sustainable Urbanization, Planning and Progress 2, 49–54. doi:10.26789/JSUPP.2017.02.008.
  30. Kalpasar: Potential Coastal Impacts for India of a Mega-Engineering Project “Fulfilling All Wishes”. Environmental Science and Engineering , 717–740doi:10.1007/978-3-642-14779-1_32/COVER.
  31. Seismic fragility assessment of concrete gravity dams. Earthquake Engineering & Structural Dynamics 32, 2221–2240. doi:10.1002/EQE.325.
  32. Anisotropic damage–plasticity model for concrete. International Journal of Plasticity 24, 1946–1965. doi:10.1016/J.IJPLAS.2008.04.002.
  33. Combined Plasticity and Damage Mechanics Model for Plain Concrete. Journal of Engineering Mechanics 116, 1435–1450. doi:10.1061/(ASCE)0733-9399(1990)116:7(1435).
  34. A systematic approach for constructing higher-order immersed boundary and ghost fluid methods for fluid–structure interaction problems. Journal of Computational Physics 231, 2892–2923. doi:10.1016/J.JCP.2011.12.027.

Summary

We haven't generated a summary for this paper yet.