Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Machine Learning Exchange Fields for Ab-initio Spin Dynamics (2403.10769v1)

Published 16 Mar 2024 in cond-mat.mtrl-sci and cond-mat.mes-hall

Abstract: We add the magnetic degrees of freedom to the widely used Gaussian Approximation Potential of ML and present a model that describes the potential energy surface of a crystal based on the atomic coordinates as well as their noncollinear magnetic moments. Assuming an adiabatic approximation for the spin directions and magnitudes, the ML model depends solely on spin coordinates and orientation, resulting in computational efffciency and enabling ab initio spin dynamics. Leveraging rotational symmetries of magnetic interactions, the ML model can incorporate various magnetic interactions, expanding into two-body, three-body terms, etc., following the spirit of cluster expansion. For simplicity, we implement the ML model with a two-body form for the exchange interaction. Comparing total energies and local fields predicted by the model for noncollinear spin arrangements with explicit results of constrained noncollinear density functional calculations for bcc Fe yields excellent results, within 1 meV/spin for the total energy. Further optimization, including three-body and other terms, is expected to encompass diverse magnetic interactions and enhance the model's accuracy. This will extend the model's applicability to a wide range of materials and facilitate the machine learning ab initio spin dynamics.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. R. Car and M. Parrinello, Unified approach for molecular dynamics and density-functional theory, Phys. Rev. Lett. 55, 2471 (1985).
  2. J. Behler and M. Parrinello, Generalized neural-network representation of high-dimensional potential-energy surfaces, Phys. Rev. Lett. 98, 146401 (2007).
  3. P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136, B864 (1964).
  4. W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140, A1133 (1965).
  5. A. N. Other and S. W. Els, We need a reference here, Adv. Phys. 27, 799 (1978).
  6. J. Behler, Perspective: Machine learning potentials for atomistic simulations, J. Chem. Phys. 145, 170901 (2016).
  7. R. Jinnouchi, F. Karsai, and G. Kresse, On-the-fly machine learning force field generation: Application to melting points, Phys. Rev. B 100, 014105 (2019a).
  8. A. P. Bartók, R. Kondor, and G. Csányi, On representing chemical environments, Phys. Rev. B 87, 184115 (2013).
  9. A. P. Bartók and G. Csányi, Gaussian approximation potentials: A brief tutorial introduction, International Journal of Quantum Chemistry 115, 1051 (2015).
  10. M. Born and R. J. Oppenheimer, Zur Quantentheorie der Molekeln (On the Quantum Theory of Molecules), Annalen der Physik 84, 457 (1927).
  11. D. M. Paige, B. Szpunar, and B. K. Tanner, The magnetocrystalline anisotropy of cobalt, J. Magn. Magn. Mater. 44, 239 (1984).
  12. P. Escudier, L’anisotropie de l’aimantation: un paramètre important de l’étude de l’anisotropie magnétocristalline (magnetization anisotropy - important parameter for study of magnetocrystalline anisotropy) (1975) pp. 125–173.
  13. R. Kikuchi, A theory of cooperative phenomena, Phys. Rev. 81, 988 (1951).
  14. K. Kaufmann and W. Baumeister, Single-centre expansion of Gaussian basis functions and the angular decomposition of their overlap integrals, J. Phys. B: Atomic, Molecular and Optical Physics 22, 1 (1989).
  15. (a), In the QUIP code from Cambridge University, the radial parts are expanded in a set of equally spaced Gaussian functions while in the vasp ML package the radial basis functions are normalised spherical Bessel functions. The Gaussian basis functions need to be orthogonalised. The normalised spherical Bessel functions are mutually orthogonal. .
  16. E. P. Wigner, Group theory and its application to the quantum mechanics of atomic spectra, in Group Theory and its application to the quantum mechanics of atomic spectra (Academic Press, 1959).
  17. P.-W. Ma and S. L. Dudarev, Constrained density functional for noncollinear magnetism, Phys. Rev. B 91, 054420 (2015).
  18. J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77, 3865 (1996).
  19. G. H. O. Daalderop, P. J. Kelly, and F. J. A. den Broeder, Prediction and confirmation of perpendicular magnetic anisotropy in Co/Ni multilayers, Phys. Rev. Lett. 68, 682 (1992).
  20. G. H. O. Daalderop, P. J. Kelly, and M. F. H. Schuurmans, Magnetic anisotropy of a free-standing Co monolayer and of multilayers which contain Co monolayers, Phys. Rev. B 50, 9989 (1994).
  21. R. Drautz, Atomic cluster expansion for accurate and transferable interatomic potentials, Phys. Rev. B 99, 014104 (2019).
  22. M. Domina, M. Cobelli, and S. Sanvito, Spectral neighbor representation for vector fields: Machine learning potentials including spin, Phys. Rev. B 105, 214439 (2022).

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com