Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Belief Change based on Knowledge Measures (2403.10502v1)

Published 15 Mar 2024 in cs.AI

Abstract: Knowledge Measures (KMs) aim at quantifying the amount of knowledge/information that a knowledge base carries. On the other hand, Belief Change (BC) is the process of changing beliefs (in our case, in terms of contraction, expansion and revision) taking into account a new piece of knowledge, which possibly may be in contradiction with the current belief. We propose a new quantitative BC framework that is based on KMs by defining belief change operators that try to minimise, from an information-theoretic point of view, the surprise that the changed belief carries. To this end, we introduce the principle of minimal surprise. In particular, our contributions are (i) a general information-theoretic approach to KMs for which [1] is a special case; (ii) KM-based BC operators that satisfy the so-called AGM postulates; and (iii) a characterisation of any BC operator that satisfies the AGM postulates as a KM-based BC operator, i.e., any BC operator satisfying the AGM postulates can be encoded within our quantitative BC framework. We also introduce quantitative measures that account for the information loss of contraction, information gain of expansion and information change of revision. We also give a succinct look into the problem of iterated revision, which deals with the application of a sequence of revision operations in our framework, and also illustrate how one may build from our KM-based contraction operator also one not satisfying the (in)famous recovery postulate, by focusing on the so-called severe withdrawal model as an illustrative example.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. doi:10.3233/FAIA200182. URL http://ebooks.iospress.nl/publication/54977
  2. doi:10.1007/978-3-319-60535-7. URL https://doi.org/10.1007/978-3-319-60535-7
  3. doi:10.1016/S0004-3702(96)00038-0. URL https://doi.org/10.1016/S0004-3702(96)00038-0
  4. doi:10.1023/A:1004344003217. URL https://doi.org/10.1023/A:1004344003217
  5. doi:10.1016/j.ijar.2016.06.010. URL https://doi.org/10.1016/j.ijar.2016.06.010
  6. doi:10.1007/s10992-011-9171-9.
  7. doi:10.1023/a:1004344003217.
  8. doi:10.2307/2678489.
  9. doi:10.1007/BF00247909. URL https://doi.org/10.1007/BF00247909
  10. doi:10.1305/NDJFL/1039182250. URL https://doi.org/10.1305/ndjfl/1039182250
  11. doi:10.1016/J.IJAR.2023.109108. URL https://doi.org/10.1016/j.ijar.2023.109108
  12. doi:10.1007/s10472-021-09740-8. URL https://doi.org/10.1007/s10472-021-09740-8
  13. doi:10.1016/j.artint.2020.103344. URL https://doi.org/10.1016/j.artint.2020.103344
  14. doi:10.1016/j.artint.2019.07.001. URL https://doi.org/10.1016/j.artint.2019.07.001
  15. doi:10.1016/S1574-6526(07)03008-8. URL https://doi.org/10.1016/S1574-6526(07)03008-8
  16. doi:10.1007/s10472-022-09794-2. URL https://doi.org/10.1007/s10472-022-09794-2
  17. doi:10.1007/bf00296175.
  18. doi:10.1007/s11225-007-9061-x. URL https://doi.org/10.1007/s11225-007-9061-x
  19. doi:10.1007/s10992-011-9176-4.
  20. doi:10.1305/ndjfl/1040308830. URL https://doi.org/10.1305/ndjfl/1040308830
  21. doi:10.1007/978-3-319-17912-4. URL https://doi.org/10.1007/978-3-319-17912-4
  22. doi:10.1016/S1574-6526(07)03006-4. URL https://doi.org/10.1016/S1574-6526(07)03006-4

Summary

We haven't generated a summary for this paper yet.