Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
o3 Pro
5 tokens/sec
GPT-4.1 Pro
15 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

Quantization Avoids Saddle Points in Distributed Optimization (2403.10423v1)

Published 15 Mar 2024 in math.OC and cs.LG

Abstract: Distributed nonconvex optimization underpins key functionalities of numerous distributed systems, ranging from power systems, smart buildings, cooperative robots, vehicle networks to sensor networks. Recently, it has also merged as a promising solution to handle the enormous growth in data and model sizes in deep learning. A fundamental problem in distributed nonconvex optimization is avoiding convergence to saddle points, which significantly degrade optimization accuracy. We discover that the process of quantization, which is necessary for all digital communications, can be exploited to enable saddle-point avoidance. More specifically, we propose a stochastic quantization scheme and prove that it can effectively escape saddle points and ensure convergence to a second-order stationary point in distributed nonconvex optimization. With an easily adjustable quantization granularity, the approach allows a user to control the number of bits sent per iteration and, hence, to aggressively reduce the communication overhead. Numerical experimental results using distributed optimization and learning problems on benchmark datasets confirm the effectiveness of the approach.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (58)
  1. (Athena Scientific), (2015).
  2. \JournalTitleIEEE Transactions on Automatic Control 54, 48–61 (2009).
  3. \JournalTitleIEEE Transactions on Automatic Control 55, 922–938 (2010).
  4. \JournalTitleIEEE Journal of Selected Topics in Signal Processing 5, 772–790 (2011).
  5. \JournalTitleSIAM Journal on Optimization 25, 944–966 (2015).
  6. \JournalTitleIEEE Transactions on Automatic Control 63, 434–448 (2017).
  7. \JournalTitleIEEE Transactions on Control of Network Systems 5, 1245–1260 (2017).
  8. \JournalTitleIEEE Control Systems Letters 2, 315–320 (2018).
  9. \JournalTitleIEEE Transactions on Signal Processing 62, 1750–1761 (2014).
  10. \JournalTitleIEEE Transactions on Information Forensics and Security 14, 565–580 (2018).
  11. \JournalTitleIEEE Transactions on Wireless Communications 12, 4286–4296 (2013).
  12. (IEEE), pp. 1543–1550 (2012).
  13. (PMLR), pp. 1467–1476 (2018).
  14. \JournalTitleSIAM Journal on Control and Optimization 59, 4081–4109 (2021).
  15. (PMLR), pp. 797–842 (2015).
  16. \JournalTitleAdvances in Neural Information Processing Systems 27 (2014).
  17. (PMLR), pp. 192–204 (2015).
  18. \JournalTitleMathematical Programming 108, 177–205 (2006).
  19. \JournalTitleMathematical Programming 162, 1–32 (2017).
  20. \JournalTitlearXiv preprint arXiv:2003.06307 (2020).
  21. \JournalTitleAdvances in Neural Information Processing Systems 30 (2017).
  22. (PMLR), pp. 1246–1257 (2016).
  23. \JournalTitleSIAM Journal on Optimization 30, 3029–3068 (2020).
  24. \JournalTitle2006 IEEE International Symposium on Information Theory pp. 635–639 (2006).
  25. \JournalTitleIEEE Journal on Selected Areas in Communications 23, 798–808 (2005).
  26. \JournalTitleIEEE Transactions on Automatic Control 61, 3870–3884 (2016).
  27. (IEEE), pp. 3800–3805 (2011).
  28. \JournalTitleIEEE Transactions on Automatic Control 57, 151–164 (2011).
  29. \JournalTitleAutomatica 55, 254–264 (2015).
  30. pp. 425–434 (2016).
  31. \JournalTitleIEEE Transactions on Industrial Electronics 62, 3885–3895 (2015).
  32. \JournalTitleIEEE Transactions on Systems, Man, and Cybernetics: Systems 51, 6691–6700 (2020).
  33. (PMLR), Vol. 97, pp. 3479–3487 (2019).
  34. \JournalTitleAdvances in Neural Information Processing Systems 35, 36382–36395 (2022).
  35. \JournalTitleIEEE Transactions on Signal Processing 66, 2834–2848 (2018).
  36. Y Nesterov, Squared functional systems and optimization problems in High Performance Optimization. (Springer), pp. 405–440 (2000).
  37. \JournalTitleIEEE Transactions on Information Theory 63, 853–884 (2017).
  38. \JournalTitleAdvances in Neural Information Processing Systems 29 (2016).
  39. (PMLR), pp. 1233–1242 (2017).
  40. \JournalTitleIEEE Transactions on Signal Processing 69, 1257–1270 (2021).
  41. \JournalTitleIEEE Transactions on Signal Processing 67, 4934–4947 (2019).
  42. \JournalTitleIEEE Transactions on Automatic Control (2023).
  43. Y Wang, Ensure differential privacy and convergence accuracy in consensus tracking and aggregative games with coupling constraints. \JournalTitlearXiv preprint arXiv:2210.16395 (2022).
  44. \JournalTitleIEEE Transactions on Automatic Control 68, 2293–2308 (2022).
  45. \JournalTitleIEEE Transactions on Automatic Control 66, 4469–4484 (2020).
  46. (PMLR), pp. 1724–1732 (2017).
  47. \JournalTitleIEEE Transactions on Signal Processing 69, 1242–1256 (2021).
  48. \JournalTitleSIAM Journal on Optimization 26, 1835–1854 (2016).
  49. \JournalTitleIEEE Transactions on Information Theory 67, 1308–1331 (2021).
  50. M Bashiri, A short tutorial on implementing canonical polyadic (cp) tensor decomposition in python (https://github.com/mohammadbashiri/tensor-decomposition-in-python) (2019).
  51. \JournalTitleNeuron 98, 1099–1115 (2018).
  52. \JournalTitleProceedings of the IEEE 106, 1411–1426 (2018).
  53. Test images for wallflower paper (https://www.microsoft.com/en-us/download/details.aspx?id=54651) (2017).
  54. \JournalTitleIEEE Open Journal of Control Systems 1, 255–267 (2022).
  55. (IEEE), pp. 84–89 (2022).
  56. \JournalTitleSIAM Journal on Optimization 29, 343–368 (2019).
  57. J Cortes, Discontinuous dynamical systems. \JournalTitleIEEE Control Systems Magazine 28, 36–73 (2008).
  58. (PMLR), pp. 11173–11182 (2020).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets