Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Construction of all MDS and involutory MDS matrices (2403.10372v2)

Published 15 Mar 2024 in cs.CR

Abstract: In this paper, we propose two algorithms for a hybrid construction of all $n\times n$ MDS and involutory MDS matrices over a finite field $\mathbb{F}{pm}$, respectively. The proposed algorithms effectively narrow down the search space to identify $(n-1) \times (n-1)$ MDS matrices, facilitating the generation of all $n \times n$ MDS and involutory MDS matrices over $\mathbb{F}{pm}$. To the best of our knowledge, existing literature lacks methods for generating all $n\times n$ MDS and involutory MDS matrices over $\mathbb{F}{pm}$. In our approach, we introduce a representative matrix form for generating all $n\times n$ MDS and involutory MDS matrices over $\mathbb{F}{pm}$. The determination of these representative MDS matrices involves searching through all $(n-1)\times (n-1)$ MDS matrices over $\mathbb{F}{pm}$. Our contributions extend to proving that the count of all $3\times 3$ MDS matrices over $\mathbb{F}{2m}$ is precisely $(2m-1)5(2m-2)(2m-3)(2{2m}-9\cdot 2m+21)$. Furthermore, we explicitly provide the count of all $4\times 4$ MDS and involutory MDS matrices over $\mathbb{F}_{2m}$ for $m=2, 3, 4$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. Joan Daemen. Cipher and hash function design, strategies based on linear and differential cryptanalysis, PhD Thesis. K.U.Leuven, 1995. http://jda.noekeon.org/.
  2. The Design of Rijndael: AES - The Advanced Encryption Standard. Information Security and Cryptography. Springer, 2002.
  3. The Maelstrom-0 hash function. In Proceedings of the 6th Brazilian Symposium on Information and Computer Systems Security, pages 17–29, 2006.
  4. Grøstl - a SHA-3 candidate. Submission to NIST, 2008, Available at http://www.groestl.info/, 09 2008.
  5. The PHOTON Family of Lightweight Hash Functions. In Phillip Rogaway, editor, Advances in Cryptology – CRYPTO 2011, pages 222–239, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.
  6. Cryptographically significant MDS matrices over finite fields: A brief survey and some generalized results. Advances in Mathematics of Communications, 13(4):779–843, 2019.
  7. On the Direct Construction of MDS and Near-MDS Matrices. arXiv: 2306.12848, 2023. https://arxiv.org/abs/2306.12848.
  8. On constructions of involutory MDS matrices. In International Conference on Cryptology in Africa, pages 43–60. Springer, 2013.
  9. Cryptographically significant MDS matrices based on circulant and circulant-like matrices for lightweight applications. Cryptography and Communications, 7:257–287, 2015.
  10. A new matrix form to generate all 3×3333\times 33 × 3 involutory MDS matrices over 𝔽2msubscript𝔽superscript2𝑚\mathbb{F}_{2^{m}}blackboard_F start_POSTSUBSCRIPT 2 start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT end_POSTSUBSCRIPT. Information Processing Letters, 147:61–68, 2019.
  11. A Construction of Matrices with No Singular Square Submatrices. In Gary L. Mullen, Alain Poli, and Henning Stichtenoth, editors, Finite Fields and Applications, pages 145–147, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.
  12. Finite fields. Number 20. Cambridge university press, 1997.
  13. Lightweight MDS Generalized Circulant Matrices. In Thomas Peyrin, editor, Fast Software Encryption, pages 101–120, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.
  14. The Theory of Error Correcting Codes. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.
  15. Generalisation of Hadamard matrix to generate involutory MDS matrices for lightweight cryptography. IET Information Security, 12(4):348–355, 2018.
  16. On MDS codes via Cauchy matrices. IEEE Transactions on Information Theory, 35(6):1314–1319, 1989.
  17. On construction of Involutory MDS Matrices from Vandermonde Matrices in G⁢F⁢(2q)𝐺𝐹superscript2𝑞GF(2^{q})italic_G italic_F ( 2 start_POSTSUPERSCRIPT italic_q end_POSTSUPERSCRIPT ). Designs, Codes and Cryptography, 64(3):287–308, sep 2012.
  18. On the automorphisms and isomorphisms of MDS matrices and their efficient implementations. Turkish Journal of Electrical Engineering and Computer Sciences, 28(1):275–287, 2020.
  19. Susanta Samanta. On the Counting of Involutory MDS Matrices. arXiv: 2310.00090, 2023. https://doi.org/10.48550/arXiv.2310.00090.
  20. Lightweight Diffusion Layer: Importance of Toeplitz Matrices. IACR Transactions on Symmetric Cryptology, 2016(1):95–113, Dec. 2016.
  21. C. E. Shannon. Communication Theory of Secrecy Systems. The Bell System Technical Journal, 28(4):656–715, 1949.
  22. Lightweight MDS Involution Matrices. In Gregor Leander, editor, Fast Software Encryption, pages 471–493, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.
  23. A new hybrid method combining search and direct based construction ideas to generate all 4×4444\times 44 × 4 involutory maximum distance separable (MDS) matrices over binary field extensions. PeerJ Computer Science, 9:e1577, 2023.
  24. A New Keystream Generator MUGI. In Joan Daemen and Vincent Rijmen, editors, Fast Software Encryption, pages 179–194, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.
  25. Construction of lightweight involutory MDS matrices. Designs, Codes and Cryptography, 89(7):1453–1483, 2021.
Citations (2)

Summary

We haven't generated a summary for this paper yet.