Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GradNav: Accelerated Exploration of Potential Energy Surfaces with Gradient-Based Navigation (2403.10358v2)

Published 15 Mar 2024 in physics.chem-ph and cs.CE

Abstract: The exploration of molecular systems' potential energy surface is important for comprehending their complex behaviors, particularly through identifying various metastable states. However, the transition between these states is often hindered by substantial energy barriers, demanding prolonged molecular simulations that consume considerable computational efforts. Our study introduces the GradNav algorithm, which enhances the exploration of the energy surface, accelerating the reconstruction of the potential energy surface (PES). This algorithm employs a strategy of initiating short simulation runs from updated starting points, derived from prior observations, to effectively navigate across potential barriers and explore new regions. To evaluate GradNav's performance, we introduce two metrics: the deepest well escape frame (DWEF) and the search success initialization ratio (SSIR). Through applications on Langevin dynamics within Mueller-type potential energy surfaces and molecular dynamics simulations of the Fs-Peptide protein, these metrics demonstrate GradNav's enhanced ability to escape deep energy wells, as shown by reduced DWEF values, and its reduced reliance on initial conditions, highlighted by increased SSIR values. Consequently, this improved exploration capability enables more precise energy estimations from simulation trajectories.

Citations (2)

Summary

We haven't generated a summary for this paper yet.