Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Attractive carbon black dispersions: structural and mechanical responses to shear (2403.10262v1)

Published 15 Mar 2024 in cond-mat.soft

Abstract: The rheological behavior of colloidal dispersions is of paramount importance in a wide range of applications, including construction materials, energy storage systems and food industry products. These dispersions consistently exhibit non-Newtonian behaviors, a consequence of intricate interplays involving colloids morphology, volume fraction, and inter-particle forces. Understanding how colloids structure under flow remains a challenge, particularly in the presence of attractive forces leading to clusters formation. In this study, we adopt a synergistic approach, combining rheology with ultra small-angle X-ray scattering (USAXS), to probe the flow-induced structural transformations of attractive carbon black (CB) dispersions and their effects on the viscosity. Our key findings can be summarized as follow. First, testing different CB volume fractions, in the high shear rate hydrodynamic regime, CB particles aggregate to form fractal clusters. Their size conforms to a power law of the shear rate, $\xi_c \propto \dot{\gamma}{-m}$, with $m\simeq 0.5$. Second, drawing insights from the fractal structure of clusters, we compute an effective volume fraction $\phi_{\mathrm{eff}}$ and find that microstructural models adeptly account for the hydrodynamic stress contributions. We identify a critical shear rate $\dot{\gamma*}$ and a critical volume fraction $\phi_{\mathrm{eff}}{*}$, at which the clusters percolate to form a dynamical network.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (78)
  1. A. Chougnet, T. Palermo, A. Audibert,  and M. Moan, “Rheological behaviour of cement and silica suspensions: Particle aggregation modelling,” Cement and Concrete Research 38, 1297–1301 (2008).
  2. S. Morariu, M. Teodorescu,  and M. Bercea, “Rheological investigation of polymer/clay dispersions as potential drilling fluids,” Journal of Petroleum Science and Engineering 210, 110015 (2022).
  3. M. S. Alfonso, H. Parant, J. Yuan, W. Neri, E. Laurichesse, K. Kampioti, A. Colin,  and P. Poulin, “Highly conductive colloidal carbon based suspension for flow-assisted electrochemical systems,” iScience 24, 102456 (2021).
  4. D. B. Genovese, J. E. Lozano,  and M. A. Rao, “The rheology of colloidal and noncolloidal food dispersions,” Journal of Food Science 72 (2007), 10.1111/j.1750-3841.2006.00253.x.
  5. Z. Xi, W. Liu, D. J. McClements,  and L. Zou, “Rheological, structural, and microstructural properties of ethanol induced cold-set whey protein emulsion gels: Effect of oil content,” Food Chemistry 291, 22–29 (2019).
  6. J. Mewis and N. J. Wagner, “Colloidal suspension rheology,” Colloidal Suspension Rheology 9780521515, 1–393 (2011).
  7. S. Lazzari, L. Nicoud, B. Jaquet, M. Lattuada,  and M. Morbidelli, “Fractal-like structures in colloid science,” Advances in Colloid and Interface Science 235, 1–13 (2016).
  8. A. Zaccone, H. Winter, M. Siebenbürger,  and M. Ballauff, “Linking self-assembly, rheology, and gel transition in attractive colloids,” Journal of Rheology 58, 1219–1244 (2014).
  9. M. Haw, M. Sievwright, W. C. Poon,  and P. Pusey, “Cluster-cluster gelation with finite bond energy,” Advances in colloid and interface science 62, 1–16 (1995).
  10. D. Xie, H. Wu, A. Zaccone, L. Braun, H. Chen,  and M. Morbidelli, “Criticality for shear-induced gelation of charge-stabilized colloids,” Soft Matter 6, 2692–2698 (2010).
  11. D. Weitz and M. Oliveria, “Fractal structures formed by kinetic aggregation of aqueous gold colloids,” Physical review letters 52, 1433 (1984).
  12. D. W. Schaefer, J. E. Martin, P. Wiltzius,  and D. S. Cannell, “Fractal geometry of colloidal aggregates,” Physical Review Letters 52, 2371 (1984).
  13. V. Trappe and P. Sandkühler, “Colloidal gels—low-density disordered solid-like states,” Current opinion in colloid & interface science 8, 494–500 (2004).
  14. R. C. Sonntag and W. B. Russel, “Structure and breakup of flocs subjected to fluid stresses. I. Shear experiments,” Journal of Colloid And Interface Science 113, 399–413 (1986).
  15. A. Zaccone, M. Soos, M. Lattuada, H. Wu, M. U. Bäbler,  and M. Morbidelli, “Breakup of dense colloidal aggregates under hydrodynamic stresses,” Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 79, 061401 (2009).
  16. R. Massaro, G. Colombo, P. Van Puyvelde,  and J. Vermant, “Viscoelastic cluster densification in sheared colloidal gels,” Soft Matter 16, 2437–2447 (2020).
  17. J. Mewis and N. J. Wagner, “Thixotropy,” Advances in Colloid and Interface Science 147-148, 214–227 (2009).
  18. Z. Varga and J. W. Swan, “Large scale anisotropies in sheared colloidal gels,” Journal of Rheology 62, 405–418 (2018).
  19. J. B. Hipp, J. J. Richards,  and N. J. Wagner, “Direct measurements of the microstructural origin of shear-thinning in carbon black suspensions,” Journal of Rheology 65, 145–157 (2021).
  20. L.-V. Bouthier, R. Castellani, S. Manneville, A. Poulesquen, R. Valette,  and E. Hachem, “Aggregation and disaggregation processes in clusters of particles under flow: Simple numerical and theoretical insights,” Physical Review Fluids 8, 023304 (2023).
  21. R. Wessel and R. C. Ball, ‘‘Fractal aggregates and gels in shear flow,” Physical Review A 46, 3008–3011 (1992).
  22. P. Snabre and P. Mills, “I. Rheology of weakly flocculated suspensions of rigid particles,” Journal de Physique III 6, 1811–1834 (1996).
  23. A. A. Potanin, “On the computer simulation of the deformation and breakup of colloidal aggregates in shear flow,” Journal of colloid and interface science 157, 399–410 (1993).
  24. R. J. Hunter and J. Frayne, “Flow behavior of coagulated colloidal sols. v. dynamics of floc growth under shear,” Journal of Colloid and Interface Science 76, 107–115 (1980).
  25. L. Brakalov, “A connection between the orthokinetic coagulation capture efficiency of aggregates and their maximum size,” Chemical Engineering Science 42, 2373–2383 (1987).
  26. X. Ruan, S. Chen,  and S. Li, “Structural evolution and breakage of dense agglomerates in shear flow and taylor-green vortex,” Chemical Engineering Science 211, 115261 (2020).
  27. W. H. Herschel and R. Bulkley, “Konsistenzmessungen von gummi-benzollösungen,” Kolloid-Zeitschrift 39, 291–300 (1926).
  28. R. I. Jeldres, P. D. Fawell,  and B. J. Florio, “Population balance modelling to describe the particle aggregation process: A review,” Powder technology 326, 190–207 (2018).
  29. R. De Rooij, A. A. Potanin, D. Van Den Ende,  and J. Mellema, “Transient shear viscosity of weakly aggregating polystyrene latex dispersions,” The Journal of Chemical Physics 100, 5353–5360 (1994).
  30. A. A. Potanin, R. De Rooij, D. Van Den Ende,  and J. Mellema, “Microrheological modeling of weakly aggregated dispersions,” The Journal of Chemical Physics 102, 5845–5853 (1995).
  31. W. Wolthers, M. H. G. Duits, D. van den Ende,  and J. Mellema, “Shear history dependence of the viscosity of aggregated colloidal dispersions,” Journal of Rheology 40, 799–811 (1996).
  32. D. Quemada and C. Berli, “Energy of interaction in colloids and its implications in rheological modeling,” Advances in colloid and interface science 98, 51–85 (2002).
  33. L. Silbert, J. Melrose,  and R. Ball, “The rheology and microstructure of concentrated, aggregated colloids,” Journal of Rheology 43, 673–700 (1999).
  34. P. Varadan and M. J. Solomon, “Shear-induced microstructural evolution of a thermoreversible colloidal gel,” Langmuir 17, 2918–2929 (2001).
  35. D. Quemada, “Rheology of concentrated disperse systems II. A model for non-newtonian shear viscosity in steady flows,” Rheologica Acta 1978 17:6 17, 632–642 (1978).
  36. D. B. Genovese, “Shear rheology of hard-sphere, dispersed, and aggregated suspensions, and filler-matrix composites,” Advances in Colloid and Interface Science 171-172, 1–16 (2012).
  37. I. M. Krieger and T. J. Dougherty, “A Mechanism for Non-Newtonian Flow in Suspensions of Rigid Spheres,” Transactions of the Society of Rheology 3, 137–152 (1959).
  38. T. Gibaud, T. Divoux,  and S. Manneville, “Encyclopedia of Complexity and Systems Science,”  (Springer, 2020) Chap. Nonlinear mechanics of colloidal gels: creep, fatigue and shear-induced yielding, pp. 1–24.
  39. J. J. Richards, P. Z. Ramos,  and Q. Liu, “A review of the shear rheology of carbon black suspensions,” Frontiers in Physics , 1–11 (2023).
  40. V. Trappe and D. A. Weitz, “Scaling of the viscoelasticity of weakly attractive particles,” Physical Review Letters 85, 449–452 (2000).
  41. G. Ovarlez, L. Tocquer, F. Bertrand,  and P. Coussot, “Rheopexy and tunable yield stress of carbon black suspensions,” Soft Matter 9, 5540–5549 (2013).
  42. A. Helal, T. Divoux,  and G. H. McKinley, “Simultaneous rheoelectric measurements of strongly conductive complex fluids,” Physical Review Applied 6, 064004 (2016).
  43. J. B. Hipp, J. J. Richards,  and N. J. Wagner, “Structure-property relationships of sheared carbon black suspensions determined by simultaneous rheological and neutron scattering measurements,” Journal of Rheology 63, 423–436 (2019).
  44. T. Gibaud, D. Frelat,  and S. Manneville, “Heterogeneous yielding dynamics in a colloidal gel,” Soft Matter 6, 3482–3488 (2010).
  45. V. Grenard, T. Divoux, N. Taberlet,  and S. Manneville, “Timescales in creep and yielding of attractive gels,” Soft matter 10, 1555–1571 (2014).
  46. T. Gibaud, C. Perge, S. B. Lindström, N. Taberlet,  and S. Manneville, “Multiple yielding processes in a colloidal gel under large amplitude oscillatory stress,” Soft Matter 12, 1701–1712 (2016).
  47. C. Perge, N. Taberlet, T. Gibaud,  and S. Manneville, “Time dependence in large amplitude oscillatory shear: A rheo-ultrasonic study of fatigue dynamics in a colloidal gel,” Journal of Rheology 58, 1331–1357 (2014).
  48. J. J. Richards, J. B. Hipp, J. K. Riley, N. J. Wagner,  and P. D. Butler, “Clustering and Percolation in Suspensions of Carbon Black,” Langmuir 33, 12260–12266 (2017).
  49. N. Dagès, L. V. Bouthier, L. Matthews, S. Manneville, T. Divoux, A. Poulesquen,  and T. Gibaud, “Interpenetration of fractal clusters drives elasticity in colloidal gels formed upon flow cessation,” Soft Matter 18, 6645–6659 (2022), arXiv:2203.08675 .
  50. L.-V. Bouthier and T. Gibaud, “Three length-scales colloidal gels: The clusters of clusters versus the interpenetrating clusters approach,” Journal of Rheology 67, 621–633 (2023).
  51. T. Gibaud, N. Dagès, P. Lidon, G. Jung, L. C. Ahouré, M. Sztucki, A. Poulesquen, N. Hengl, F. Pignon,  and S. Manneville, “Rheoacoustic Gels: Tuning Mechanical and Flow Properties of Colloidal Gels with Ultrasonic Vibrations,” Physical Review X 10, 1–21 (2020), 011028, 1905.07282 .
  52. N. Dagès, P. Lidon, G. Jung, F. Pignon, S. Manneville,  and T. Gibaud, “Mechanics and structure of carbon black gels under high-power ultrasound,” Journal of Rheology 65, 477–490 (2021), arXiv:2011.06809 .
  53. H. Li, H.-g. Xiao,  and J.-p. Ou, “Effect of compressive strain on electrical resistivity of carbon black-filled cement-based composites,” Cement and Concrete Composites 28, 824–828 (2006).
  54. Q. Liu and J. J. Richards, “Rheo-electric measurements of carbon black suspensions containing polyvinylidene difluoride in n-methyl-2-pyrrolidone,” Journal of Rheology 67, 647–659 (2023).
  55. P. Panine, M. Gradzielski,  and T. Narayanan, “Combined rheometry and small-angle x-ray scattering,” Review of Scientific Instruments 74, 2451–2455 (2003).
  56. T. Divoux, V. Grenard,  and S. Manneville, “Rheological hysteresis in soft glassy materials,” Physical Review Letters 110, 1–7 (2013), arXiv:1207.3953 .
  57. M. Caggioni, V. Trappe,  and P. T. Spicer, “Variations of the Herschel–Bulkley exponent reflecting contributions of the viscous continuous phase to the shear rate-dependent stress of soft glassy materials,” Journal of Rheology 64, 413–422 (2020).
  58. T. Narayanan, M. Sztucki, T. Zinn, J. Kieffer, A. Homs-Puron, J. Gorini, P. Van Vaerenbergh,  and P. Boesecke, “Performance of the time-resolved ultra-small-angle x-ray scattering beamline with the extremely brilliant source,” Journal of Applied Crystallography 55, 98–111 (2022).
  59. E. M. Dannenberg, L. Paquin,  and H. Gwinnell, “Carbon Black,” in Kirk-Othmer Encyclopedia of Chemical Technology (John Wiley & Sons, Ltd, 2000).
  60. A. Einstein, Eine neue bestimmung der moleküldimensionen, Ph.D. thesis, ETH Zurich (1905).
  61. J.-M. Piau, M. Dorget, J.-F. Palierne,  and A. Pouchelon, “Shear elasticity and yield stress of silica–silicone physical gels: Fractal approach,” Journal of Rheology 43, 305–314 (1999).
  62. G. P. Baeza, A. C. Genix, C. Degrandcourt, L. Petitjean, J. Gummel, M. Couty,  and J. Oberdisse, “Multiscale filler structure in simplified industrial nanocomposite silica/SBR systems studied by SAXS and TEM,” Macromolecules 46, 317–329 (2013).
  63. L.-V. Bouthier and T. Gibaud, “Three length scales colloidal gels: the clusters of clusters versus the interpenetrating clusters approach,” arXiv  (2022), arXiv:2210.10505 .
  64. M. Carpineti, M. Giglio,  and V. Degiorgio, “Mass conservation and anticorrelation effects in the colloidal aggregation of dense solutions,” Physical Review E 51, 590 (1995).
  65. T. Narayanan, R. Dattani, J. Möller,  and P. Kwaśniewski, “A microvolume shear cell for combined rheology and x-ray scattering experiments,” Review of Scientific Instruments 91 (2020).
  66. B. O. Conchuir, Y. M. Harshe, M. Lattuada,  and A. Zaccone, “Analytical model of fractal aggregate stability and restructuring in shear flows,” Industrial and Engineering Chemistry Research 53, 9109–9119 (2014).
  67. L. Ehrl, M. Soos,  and M. Lattuada, “Generation and geometrical analysis of dense clusters with variable fractal dimension,” Journal of Physical Chemistry B 113, 10587–10599 (2009).
  68. J. A. Richards, R. E. O’Neill,  and W. C. Poon, “Turning a yield-stress calcite suspension into a shear-thickening one by tuning inter-particle friction,” Rheologica Acta 60, 97–106 (2021), arXiv:2007.05433 .
  69. H. Wu and M. Morbidelli, “Model relating structure of colloidal gels to their elastic properties,” Langmuir 17, 1030–1036 (2001).
  70. A. Zaccone, D. Gentili, H. Wu, M. Morbidelli,  and E. Del Gado, “Shear-driven solidification of dilute colloidal suspensions,” Phys. Rev. Lett. 106, 138301 (2011).
  71. M. Wyart and M. E. Cates, “Discontinuous shear thickening without inertia in dense non-brownian suspensions,” Physical Review Letters 112 (2014), 10.1103/PhysRevLett.112.098302, arXiv:1311.4099 .
  72. B. M. Guy, J. A. Richards, D. J. Hodgson, E. Blanco,  and W. C. Poon, “Constraint-Based Approach to Granular Dispersion Rheology,” Physical Review Letters 121, 128001 (2018), arXiv:1807.11356 .
  73. J. A. Richards, B. M. Guy, E. Blanco, M. Hermes, G. Poy,  and W. C. K. Poon, “The role of friction in the yielding of adhesive non-Brownian suspensions,” Journal of Rheology 64, 405–412 (2020), arXiv:1910.07958 .
  74. Y. Wang and R. H. Ewoldt, ‘‘New insights on carbon black suspension rheology – anisotropic thixotropy and anti-thixotropy,” arXiv:2202.05772 , 1–31 (2022), arXiv:2202.05772 .
  75. S. R. Aragón and R. Pecora, “Theory of dynamic light scattering from polydisperse systems,” The Journal of Chemical Physics 64, 2395–2404 (1976).
  76. J. Teixeira, “Small-angle scattering by fractal systems,” Journal of Applied Crystallography 21, 781–785 (1988).
  77. G. Beaucage, “Approximations Leading to a Unified Exponential/Power-Law Approach to Small-Angle Scattering,” Journal of Applied Crystallography 28, 717–728 (1995).
  78. G. Beaucage, “Small-Angle Scattering from Polymeric Mass Fractals of Arbitrary Mass-Fractal Dimension,” Journal of Applied Crystallography 29, 134–146 (1996).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com