Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ultra-Wideband Positioning System Based on ESP32 and DWM3000 Modules (2403.10194v1)

Published 15 Mar 2024 in cs.RO

Abstract: In this paper, an Ultra-Wideband (UWB) positioning system is introduced, that leverages six identical custom-designed boards, each featuring an ESP32 microcontroller and a DWM3000 module from Quorvo. The system is capable of achieving localization with an accuracy of up to 10 cm, by utilizing Two-Way-Ranging (TWR) measurements between one designated tag and five anchor devices. The gathered distance measurements are subsequently processed by an Extended Kalman Filter (EKF) running locally on the tag board, enabling it to determine its own position, relying on fixed, a priori known positions of the anchor boards. This paper presents a comprehensive overview of the systems architecture, the key components, and the capabilities it offers for indoor positioning and tracking applications.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (12)
  1. S. M. Kouhini, C. Kottke, Z. Ma, R. Freund, V. Jungnickel, M. Müller, D. Behnke, M. M. Vazquez, and J.-P. M. G. Linnartz, “Lifi positioning for industry 4.0,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 27, no. 6, pp. 1–15, 2021.
  2. H. Liu and G. Pang, “Accelerometer for mobile robot positioning,” IEEE Transactions on Industry Applications, vol. 37, no. 3, pp. 812–819, 2001.
  3. G. Schroeer, “A real-time uwb multi-channel indoor positioning system for industrial scenarios,” in 2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 2018, pp. 1–5.
  4. Y. Xianjia, L. Qingqing, J. P. Queralta, J. Heikkonen, and T. Westerlund, “Applications of uwb networks and positioning to autonomous robots and industrial systems,” in 2021 10th Mediterranean Conference on Embedded Computing (MECO), 2021, pp. 1–6.
  5. M. Babiuch, P. Foltýnek, and P. Smutný, “Using the esp32 microcontroller for data processing,” in 2019 20th International Carpathian Control Conference (ICCC), 2019, pp. 1–6.
  6. S. Krebs and T. Herter, “uwb-tracking,” https://github.com/krebsbstn/uwb-tracking, 2023.
  7. I. S. Association, “IEEE-standard 802.15.4a-2007: Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs): Amendment 1: Add Alternate PHYs,” IEEE Standards 2007, 2007.
  8. ——, “IEEE-Standard 802.15.4z-2020: Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs): Amendment 6: Ultrawideband PHYs,” IEEE Standards 2020, 2020.
  9. Aug 2023. [Online]. Available: https://www.freertos.org/index.html
  10. S. Krebs and T. Herter, November 2023. [Online]. Available: https://krebsbstn.github.io/uwb-tracking/files.html
  11. Q. Li, R. Li, K. Ji, and W. Dai, “Kalman filter and its application,” in 2015 8th International Conference on Intelligent Networks and Intelligent Systems (ICINIS), 2015, pp. 74–77.
  12. W. Zhao, A. Goudar, and A. P. Schoellig, “Finding the right place: Sensor placement for uwb time difference of arrival localization in cluttered indoor environments,” IEEE Robotics and Automation Letters, vol. 7, no. 3, pp. 6075–6082, Jul. 2022. [Online]. Available: http://dx.doi.org/10.1109/LRA.2022.3165181

Summary

We haven't generated a summary for this paper yet.