Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hybrid Convolutional and Attention Network for Hyperspectral Image Denoising (2403.10067v1)

Published 15 Mar 2024 in eess.IV and cs.CV

Abstract: Hyperspectral image (HSI) denoising is critical for the effective analysis and interpretation of hyperspectral data. However, simultaneously modeling global and local features is rarely explored to enhance HSI denoising. In this letter, we propose a hybrid convolution and attention network (HCANet), which leverages both the strengths of convolution neural networks (CNNs) and Transformers. To enhance the modeling of both global and local features, we have devised a convolution and attention fusion module aimed at capturing long-range dependencies and neighborhood spectral correlations. Furthermore, to improve multi-scale information aggregation, we design a multi-scale feed-forward network to enhance denoising performance by extracting features at different scales. Experimental results on mainstream HSI datasets demonstrate the rationality and effectiveness of the proposed HCANet. The proposed model is effective in removing various types of complex noise. Our codes are available at \url{https://github.com/summitgao/HCANet}.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (15)
  1. L. Qi, Z. Chen, F. Gao, J. Dong, X. Gao, and Q. Du, “Multiview spatial–spectral two-stream network for hyperspectral image unmixing,” IEEE Trans. Geosci. Remote Sens., vol. 61, pp. 1–16, 2023.
  2. J. Lin, F. Gao, X. Shi, J. Dong, and Q. Du, “SS-MAE: Spatial–spectral masked autoencoder for multisource remote sensing image classification,” IEEE Trans. Geosci. Remote Sens., vol. 61, pp. 1–14, 2023.
  3. Y.-Q. Zhao and J. Yang, “Hyperspectral image denoising via sparse representation and low-rank constraint,” IEEE Trans. Geosci. Remote Sens., vol. 53, no. 1, pp. 296–308, 2015.
  4. Q. Yuan, L. Zhang, and H. Shen, “Hyperspectral image denoising employing a spectral–spatial adaptive total variation model,” IEEE Trans. Geosci. Remote Sens., vol. 50, no. 10, pp. 3660–3677, 2012.
  5. W. He, Q. Yao, C. Li, N. Yokoya, and Q. Zhao, “Non-local meets global: An integrated paradigm for hyperspectral denoising,” in IEEE CVPR, 2019, pp. 6861–6870.
  6. Y. Peng, D. Meng, Z. Xu, C. Gao, Y. Yang, and B. Zhang, “Decomposable nonlocal tensor dictionary learning for multispectral image denoising,” in IEEE CVPR, 2014, pp. 2949–2956.
  7. W. Xie and Y. Li, “Hyperspectral imagery denoising by deep learning with trainable nonlinearity function,” IEEE Geosci Remote Sens. Lett., vol. 14, no. 11, pp. 1963–1967, 2017.
  8. A. Maffei, J. M. Haut, M. E. Paoletti, J. Plaza, L. Bruzzone, and A. Plaza, “A single model CNN for hyperspectral image denoising,” IEEE Trans. Geosci. Remote Sens., vol. 58, no. 4, pp. 2516–2529, 2020.
  9. S. Wang, L. Li, X. Li, J. Zhang, L. Zhao, X. Su, and F. Chen, “A denoising network based on frequency-spectral- spatial-feature for hyperspectral image,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 16, pp. 6693–6710, 2023.
  10. H. Pan, F. Gao, J. Dong, and Q. Du, “Multiscale adaptive fusion network for hyperspectral image denoising,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 16, pp. 3045–3059, 2023.
  11. A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words: Transformers for image recognition at scale,” in ICLR, 2021, pp. 1–21.
  12. M. Maggioni, V. Katkovnik, K. Egiazarian, and A. Foi, “Nonlocal transform-domain filter for volumetric data denoising and reconstruction,” IEEE Tran. Image Process., vol. 22, no. 1, pp. 119–133, 2013.
  13. H. Zhang, W. He, L. Zhang, H. Shen, and Q. Yuan, “Hyperspectral image restoration using low-rank matrix recovery,” IEEE Trans. Geosci. Remote Sens., vol. 52, no. 8, pp. 4729–4743, 2014.
  14. W. He, H. Zhang, L. Zhang, and H. Shen, “Total-variation-regularized low-rank matrix factorization for hyperspectral image restoration,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 1, pp. 178–188, 2016.
  15. S. W. Zamir, A. Arora, S. Khan, M. Hayat, F. S. Khan, and M.-H. Yang, “Restormer: Efficient transformer for high-resolution image restoration,” in IEEE CVPR, 2022.
Citations (8)

Summary

We haven't generated a summary for this paper yet.