Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Temporal-spatial Adaptation of Promptable SAM Enhance Accuracy and Generalizability of cine CMR Segmentation (2403.10009v2)

Published 15 Mar 2024 in eess.IV and cs.CV

Abstract: Accurate myocardium segmentation across all phases in one cardiac cycle in cine cardiac magnetic resonance (CMR) scans is crucial for comprehensively cardiac function analysis. Despite advancements in deep learning (DL) for automatic cine CMR segmentation, generalizability on unseen data remains a significant challenge. Recently, the segment-anything-model (SAM) has been invented as a segmentation foundation model, known for its accurate segmentation and more importantly, zero-shot generalization. SAM was trained on two-dimensional (2D) natural images; to adapt it for comprehensive cine CMR segmentation, we propose cineCMR-SAM which incorporates both temporal and spatial information through a modified model architecture. Compared to other state-of-the-art (SOTA) methods, our model achieved superior data-specific model segmentation accuracy on the STACOM2011 when fine-tuned on this dataset and demonstrated superior zero-shot generalization on two other large public datasets (ACDC and M&Ms) unseen during fine-tuning. Additionally, we introduced a text prompt feature in cineCMR-SAM to specify the view type of input slices (short-axis or long-axis), enhancing performance across all view types.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Zhennong Chen (3 papers)
  2. Sekeun Kim (15 papers)
  3. Hui Ren (37 papers)
  4. Quanzheng Li (122 papers)
  5. Xiang Li (1003 papers)

Summary

We haven't generated a summary for this paper yet.