TRG-Net: An Interpretable and Controllable Rain Generator (2403.09993v2)
Abstract: Exploring and modeling rain generation mechanism is critical for augmenting paired data to ease training of rainy image processing models. Against this task, this study proposes a novel deep learning based rain generator, which fully takes the physical generation mechanism underlying rains into consideration and well encodes the learning of the fundamental rain factors (i.e., shape, orientation, length, width and sparsity) explicitly into the deep network. Its significance lies in that the generator not only elaborately design essential elements of the rain to simulate expected rains, like conventional artificial strategies, but also finely adapt to complicated and diverse practical rainy images, like deep learning methods. By rationally adopting filter parameterization technique, we first time achieve a deep network that is finely controllable with respect to rain factors and able to learn the distribution of these factors purely from data. Our unpaired generation experiments demonstrate that the rain generated by the proposed rain generator is not only of higher quality, but also more effective for deraining and downstream tasks compared to current state-of-the-art rain generation methods. Besides, the paired data augmentation experiments, including both in-distribution and out-of-distribution (OOD), further validate the diversity of samples generated by our model for in-distribution deraining and OOD generalization tasks.
- Yang, W., Tan, R.T., Wang, S., Fang, Y., Liu, J.: Single image deraining: From model-based to data-driven and beyond. IEEE Transactions on pattern analysis and machine intelligence 43(11), 4059–4077 (2020) Li et al. [2019] Li, S., Araujo, I.B., Ren, W., Wang, Z., Tokuda, E.K., Junior, R.H., Cesar-Junior, R., Zhang, J., Guo, X., Cao, X.: Single image deraining: A comprehensive benchmark analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3838–3847 (2019) Wang et al. [2020] Wang, H., Xie, Q., Wu, Y., Zhao, Q., Meng, D.: Single image rain streaks removal: a review and an exploration. International Journal of Machine Learning and Cybernetics 11(4), 853–872 (2020) Bossu et al. [2011] Bossu, J., Hautière, N., Tarel, J.-P.: Rain or snow detection in image sequences through use of a histogram of orientation of streaks. International Journal of Computer Vision 93(3), 348–367 (2011) https://doi.org/10.1007/s11263-011-0421-7 Fu et al. [2017] Fu, X., Huang, J., Zeng, D., Huang, Y., Ding, X., Paisley, J.: Removing rain from single images via a deep detail network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3855–3863 (2017) Yang et al. [2017] Yang, W., Tan, R.T., Feng, J., Liu, J., Guo, Z., Yan, S.: Deep joint rain detection and removal from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1357–1366 (2017) Garg and Nayar [2006] Garg, K., Nayar, S.K.: Photorealistic rendering of rain streaks. ACM Transactions on Graphics (TOG) 25(3), 996–1002 (2006) Garg and Nayar [2007] Garg, K., Nayar, S.K.: Vision and rain. International Journal of Computer Vision 75(1), 3–27 (2007) Weber et al. [2015] Weber, Y., Jolivet, V., Gilet, G., Ghazanfarpour, D.: A multiscale model for rain rendering in real-time. Computers & Graphics 50, 61–70 (2015) Starik and Werman [2003] Starik, S., Werman, M.: Simulation of rain in videos. In: Texture Workshop, ICCV, vol. 2, pp. 406–409 (2003) Wang et al. [2006] Wang, L., Lin, Z., Fang, T., Yang, X., Yu, X., Kang, S.B.: Real-time rendering of realistic rain. In: ACM SIGGRAPH 2006 Sketches, p. 156 (2006) Wei et al. [2019] Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, S., Araujo, I.B., Ren, W., Wang, Z., Tokuda, E.K., Junior, R.H., Cesar-Junior, R., Zhang, J., Guo, X., Cao, X.: Single image deraining: A comprehensive benchmark analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3838–3847 (2019) Wang et al. [2020] Wang, H., Xie, Q., Wu, Y., Zhao, Q., Meng, D.: Single image rain streaks removal: a review and an exploration. International Journal of Machine Learning and Cybernetics 11(4), 853–872 (2020) Bossu et al. [2011] Bossu, J., Hautière, N., Tarel, J.-P.: Rain or snow detection in image sequences through use of a histogram of orientation of streaks. International Journal of Computer Vision 93(3), 348–367 (2011) https://doi.org/10.1007/s11263-011-0421-7 Fu et al. [2017] Fu, X., Huang, J., Zeng, D., Huang, Y., Ding, X., Paisley, J.: Removing rain from single images via a deep detail network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3855–3863 (2017) Yang et al. [2017] Yang, W., Tan, R.T., Feng, J., Liu, J., Guo, Z., Yan, S.: Deep joint rain detection and removal from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1357–1366 (2017) Garg and Nayar [2006] Garg, K., Nayar, S.K.: Photorealistic rendering of rain streaks. ACM Transactions on Graphics (TOG) 25(3), 996–1002 (2006) Garg and Nayar [2007] Garg, K., Nayar, S.K.: Vision and rain. International Journal of Computer Vision 75(1), 3–27 (2007) Weber et al. [2015] Weber, Y., Jolivet, V., Gilet, G., Ghazanfarpour, D.: A multiscale model for rain rendering in real-time. Computers & Graphics 50, 61–70 (2015) Starik and Werman [2003] Starik, S., Werman, M.: Simulation of rain in videos. In: Texture Workshop, ICCV, vol. 2, pp. 406–409 (2003) Wang et al. [2006] Wang, L., Lin, Z., Fang, T., Yang, X., Yu, X., Kang, S.B.: Real-time rendering of realistic rain. In: ACM SIGGRAPH 2006 Sketches, p. 156 (2006) Wei et al. [2019] Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Wu, Y., Zhao, Q., Meng, D.: Single image rain streaks removal: a review and an exploration. International Journal of Machine Learning and Cybernetics 11(4), 853–872 (2020) Bossu et al. [2011] Bossu, J., Hautière, N., Tarel, J.-P.: Rain or snow detection in image sequences through use of a histogram of orientation of streaks. International Journal of Computer Vision 93(3), 348–367 (2011) https://doi.org/10.1007/s11263-011-0421-7 Fu et al. [2017] Fu, X., Huang, J., Zeng, D., Huang, Y., Ding, X., Paisley, J.: Removing rain from single images via a deep detail network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3855–3863 (2017) Yang et al. [2017] Yang, W., Tan, R.T., Feng, J., Liu, J., Guo, Z., Yan, S.: Deep joint rain detection and removal from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1357–1366 (2017) Garg and Nayar [2006] Garg, K., Nayar, S.K.: Photorealistic rendering of rain streaks. ACM Transactions on Graphics (TOG) 25(3), 996–1002 (2006) Garg and Nayar [2007] Garg, K., Nayar, S.K.: Vision and rain. International Journal of Computer Vision 75(1), 3–27 (2007) Weber et al. [2015] Weber, Y., Jolivet, V., Gilet, G., Ghazanfarpour, D.: A multiscale model for rain rendering in real-time. Computers & Graphics 50, 61–70 (2015) Starik and Werman [2003] Starik, S., Werman, M.: Simulation of rain in videos. In: Texture Workshop, ICCV, vol. 2, pp. 406–409 (2003) Wang et al. [2006] Wang, L., Lin, Z., Fang, T., Yang, X., Yu, X., Kang, S.B.: Real-time rendering of realistic rain. In: ACM SIGGRAPH 2006 Sketches, p. 156 (2006) Wei et al. [2019] Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Bossu, J., Hautière, N., Tarel, J.-P.: Rain or snow detection in image sequences through use of a histogram of orientation of streaks. International Journal of Computer Vision 93(3), 348–367 (2011) https://doi.org/10.1007/s11263-011-0421-7 Fu et al. [2017] Fu, X., Huang, J., Zeng, D., Huang, Y., Ding, X., Paisley, J.: Removing rain from single images via a deep detail network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3855–3863 (2017) Yang et al. [2017] Yang, W., Tan, R.T., Feng, J., Liu, J., Guo, Z., Yan, S.: Deep joint rain detection and removal from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1357–1366 (2017) Garg and Nayar [2006] Garg, K., Nayar, S.K.: Photorealistic rendering of rain streaks. ACM Transactions on Graphics (TOG) 25(3), 996–1002 (2006) Garg and Nayar [2007] Garg, K., Nayar, S.K.: Vision and rain. International Journal of Computer Vision 75(1), 3–27 (2007) Weber et al. [2015] Weber, Y., Jolivet, V., Gilet, G., Ghazanfarpour, D.: A multiscale model for rain rendering in real-time. Computers & Graphics 50, 61–70 (2015) Starik and Werman [2003] Starik, S., Werman, M.: Simulation of rain in videos. In: Texture Workshop, ICCV, vol. 2, pp. 406–409 (2003) Wang et al. [2006] Wang, L., Lin, Z., Fang, T., Yang, X., Yu, X., Kang, S.B.: Real-time rendering of realistic rain. In: ACM SIGGRAPH 2006 Sketches, p. 156 (2006) Wei et al. [2019] Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Fu, X., Huang, J., Zeng, D., Huang, Y., Ding, X., Paisley, J.: Removing rain from single images via a deep detail network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3855–3863 (2017) Yang et al. [2017] Yang, W., Tan, R.T., Feng, J., Liu, J., Guo, Z., Yan, S.: Deep joint rain detection and removal from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1357–1366 (2017) Garg and Nayar [2006] Garg, K., Nayar, S.K.: Photorealistic rendering of rain streaks. ACM Transactions on Graphics (TOG) 25(3), 996–1002 (2006) Garg and Nayar [2007] Garg, K., Nayar, S.K.: Vision and rain. International Journal of Computer Vision 75(1), 3–27 (2007) Weber et al. [2015] Weber, Y., Jolivet, V., Gilet, G., Ghazanfarpour, D.: A multiscale model for rain rendering in real-time. Computers & Graphics 50, 61–70 (2015) Starik and Werman [2003] Starik, S., Werman, M.: Simulation of rain in videos. In: Texture Workshop, ICCV, vol. 2, pp. 406–409 (2003) Wang et al. [2006] Wang, L., Lin, Z., Fang, T., Yang, X., Yu, X., Kang, S.B.: Real-time rendering of realistic rain. In: ACM SIGGRAPH 2006 Sketches, p. 156 (2006) Wei et al. [2019] Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Yang, W., Tan, R.T., Feng, J., Liu, J., Guo, Z., Yan, S.: Deep joint rain detection and removal from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1357–1366 (2017) Garg and Nayar [2006] Garg, K., Nayar, S.K.: Photorealistic rendering of rain streaks. ACM Transactions on Graphics (TOG) 25(3), 996–1002 (2006) Garg and Nayar [2007] Garg, K., Nayar, S.K.: Vision and rain. International Journal of Computer Vision 75(1), 3–27 (2007) Weber et al. [2015] Weber, Y., Jolivet, V., Gilet, G., Ghazanfarpour, D.: A multiscale model for rain rendering in real-time. Computers & Graphics 50, 61–70 (2015) Starik and Werman [2003] Starik, S., Werman, M.: Simulation of rain in videos. In: Texture Workshop, ICCV, vol. 2, pp. 406–409 (2003) Wang et al. [2006] Wang, L., Lin, Z., Fang, T., Yang, X., Yu, X., Kang, S.B.: Real-time rendering of realistic rain. In: ACM SIGGRAPH 2006 Sketches, p. 156 (2006) Wei et al. [2019] Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Garg, K., Nayar, S.K.: Photorealistic rendering of rain streaks. ACM Transactions on Graphics (TOG) 25(3), 996–1002 (2006) Garg and Nayar [2007] Garg, K., Nayar, S.K.: Vision and rain. International Journal of Computer Vision 75(1), 3–27 (2007) Weber et al. [2015] Weber, Y., Jolivet, V., Gilet, G., Ghazanfarpour, D.: A multiscale model for rain rendering in real-time. Computers & Graphics 50, 61–70 (2015) Starik and Werman [2003] Starik, S., Werman, M.: Simulation of rain in videos. In: Texture Workshop, ICCV, vol. 2, pp. 406–409 (2003) Wang et al. [2006] Wang, L., Lin, Z., Fang, T., Yang, X., Yu, X., Kang, S.B.: Real-time rendering of realistic rain. In: ACM SIGGRAPH 2006 Sketches, p. 156 (2006) Wei et al. [2019] Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Garg, K., Nayar, S.K.: Vision and rain. International Journal of Computer Vision 75(1), 3–27 (2007) Weber et al. [2015] Weber, Y., Jolivet, V., Gilet, G., Ghazanfarpour, D.: A multiscale model for rain rendering in real-time. Computers & Graphics 50, 61–70 (2015) Starik and Werman [2003] Starik, S., Werman, M.: Simulation of rain in videos. In: Texture Workshop, ICCV, vol. 2, pp. 406–409 (2003) Wang et al. [2006] Wang, L., Lin, Z., Fang, T., Yang, X., Yu, X., Kang, S.B.: Real-time rendering of realistic rain. In: ACM SIGGRAPH 2006 Sketches, p. 156 (2006) Wei et al. [2019] Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weber, Y., Jolivet, V., Gilet, G., Ghazanfarpour, D.: A multiscale model for rain rendering in real-time. Computers & Graphics 50, 61–70 (2015) Starik and Werman [2003] Starik, S., Werman, M.: Simulation of rain in videos. In: Texture Workshop, ICCV, vol. 2, pp. 406–409 (2003) Wang et al. [2006] Wang, L., Lin, Z., Fang, T., Yang, X., Yu, X., Kang, S.B.: Real-time rendering of realistic rain. In: ACM SIGGRAPH 2006 Sketches, p. 156 (2006) Wei et al. [2019] Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Starik, S., Werman, M.: Simulation of rain in videos. In: Texture Workshop, ICCV, vol. 2, pp. 406–409 (2003) Wang et al. [2006] Wang, L., Lin, Z., Fang, T., Yang, X., Yu, X., Kang, S.B.: Real-time rendering of realistic rain. In: ACM SIGGRAPH 2006 Sketches, p. 156 (2006) Wei et al. [2019] Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, L., Lin, Z., Fang, T., Yang, X., Yu, X., Kang, S.B.: Real-time rendering of realistic rain. In: ACM SIGGRAPH 2006 Sketches, p. 156 (2006) Wei et al. [2019] Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR
- Li, S., Araujo, I.B., Ren, W., Wang, Z., Tokuda, E.K., Junior, R.H., Cesar-Junior, R., Zhang, J., Guo, X., Cao, X.: Single image deraining: A comprehensive benchmark analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3838–3847 (2019) Wang et al. [2020] Wang, H., Xie, Q., Wu, Y., Zhao, Q., Meng, D.: Single image rain streaks removal: a review and an exploration. International Journal of Machine Learning and Cybernetics 11(4), 853–872 (2020) Bossu et al. [2011] Bossu, J., Hautière, N., Tarel, J.-P.: Rain or snow detection in image sequences through use of a histogram of orientation of streaks. International Journal of Computer Vision 93(3), 348–367 (2011) https://doi.org/10.1007/s11263-011-0421-7 Fu et al. [2017] Fu, X., Huang, J., Zeng, D., Huang, Y., Ding, X., Paisley, J.: Removing rain from single images via a deep detail network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3855–3863 (2017) Yang et al. [2017] Yang, W., Tan, R.T., Feng, J., Liu, J., Guo, Z., Yan, S.: Deep joint rain detection and removal from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1357–1366 (2017) Garg and Nayar [2006] Garg, K., Nayar, S.K.: Photorealistic rendering of rain streaks. ACM Transactions on Graphics (TOG) 25(3), 996–1002 (2006) Garg and Nayar [2007] Garg, K., Nayar, S.K.: Vision and rain. International Journal of Computer Vision 75(1), 3–27 (2007) Weber et al. [2015] Weber, Y., Jolivet, V., Gilet, G., Ghazanfarpour, D.: A multiscale model for rain rendering in real-time. Computers & Graphics 50, 61–70 (2015) Starik and Werman [2003] Starik, S., Werman, M.: Simulation of rain in videos. In: Texture Workshop, ICCV, vol. 2, pp. 406–409 (2003) Wang et al. [2006] Wang, L., Lin, Z., Fang, T., Yang, X., Yu, X., Kang, S.B.: Real-time rendering of realistic rain. In: ACM SIGGRAPH 2006 Sketches, p. 156 (2006) Wei et al. [2019] Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Wu, Y., Zhao, Q., Meng, D.: Single image rain streaks removal: a review and an exploration. International Journal of Machine Learning and Cybernetics 11(4), 853–872 (2020) Bossu et al. [2011] Bossu, J., Hautière, N., Tarel, J.-P.: Rain or snow detection in image sequences through use of a histogram of orientation of streaks. International Journal of Computer Vision 93(3), 348–367 (2011) https://doi.org/10.1007/s11263-011-0421-7 Fu et al. [2017] Fu, X., Huang, J., Zeng, D., Huang, Y., Ding, X., Paisley, J.: Removing rain from single images via a deep detail network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3855–3863 (2017) Yang et al. [2017] Yang, W., Tan, R.T., Feng, J., Liu, J., Guo, Z., Yan, S.: Deep joint rain detection and removal from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1357–1366 (2017) Garg and Nayar [2006] Garg, K., Nayar, S.K.: Photorealistic rendering of rain streaks. ACM Transactions on Graphics (TOG) 25(3), 996–1002 (2006) Garg and Nayar [2007] Garg, K., Nayar, S.K.: Vision and rain. International Journal of Computer Vision 75(1), 3–27 (2007) Weber et al. [2015] Weber, Y., Jolivet, V., Gilet, G., Ghazanfarpour, D.: A multiscale model for rain rendering in real-time. Computers & Graphics 50, 61–70 (2015) Starik and Werman [2003] Starik, S., Werman, M.: Simulation of rain in videos. In: Texture Workshop, ICCV, vol. 2, pp. 406–409 (2003) Wang et al. [2006] Wang, L., Lin, Z., Fang, T., Yang, X., Yu, X., Kang, S.B.: Real-time rendering of realistic rain. In: ACM SIGGRAPH 2006 Sketches, p. 156 (2006) Wei et al. [2019] Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Bossu, J., Hautière, N., Tarel, J.-P.: Rain or snow detection in image sequences through use of a histogram of orientation of streaks. International Journal of Computer Vision 93(3), 348–367 (2011) https://doi.org/10.1007/s11263-011-0421-7 Fu et al. [2017] Fu, X., Huang, J., Zeng, D., Huang, Y., Ding, X., Paisley, J.: Removing rain from single images via a deep detail network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3855–3863 (2017) Yang et al. [2017] Yang, W., Tan, R.T., Feng, J., Liu, J., Guo, Z., Yan, S.: Deep joint rain detection and removal from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1357–1366 (2017) Garg and Nayar [2006] Garg, K., Nayar, S.K.: Photorealistic rendering of rain streaks. ACM Transactions on Graphics (TOG) 25(3), 996–1002 (2006) Garg and Nayar [2007] Garg, K., Nayar, S.K.: Vision and rain. International Journal of Computer Vision 75(1), 3–27 (2007) Weber et al. [2015] Weber, Y., Jolivet, V., Gilet, G., Ghazanfarpour, D.: A multiscale model for rain rendering in real-time. Computers & Graphics 50, 61–70 (2015) Starik and Werman [2003] Starik, S., Werman, M.: Simulation of rain in videos. In: Texture Workshop, ICCV, vol. 2, pp. 406–409 (2003) Wang et al. [2006] Wang, L., Lin, Z., Fang, T., Yang, X., Yu, X., Kang, S.B.: Real-time rendering of realistic rain. In: ACM SIGGRAPH 2006 Sketches, p. 156 (2006) Wei et al. [2019] Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Fu, X., Huang, J., Zeng, D., Huang, Y., Ding, X., Paisley, J.: Removing rain from single images via a deep detail network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3855–3863 (2017) Yang et al. [2017] Yang, W., Tan, R.T., Feng, J., Liu, J., Guo, Z., Yan, S.: Deep joint rain detection and removal from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1357–1366 (2017) Garg and Nayar [2006] Garg, K., Nayar, S.K.: Photorealistic rendering of rain streaks. ACM Transactions on Graphics (TOG) 25(3), 996–1002 (2006) Garg and Nayar [2007] Garg, K., Nayar, S.K.: Vision and rain. International Journal of Computer Vision 75(1), 3–27 (2007) Weber et al. [2015] Weber, Y., Jolivet, V., Gilet, G., Ghazanfarpour, D.: A multiscale model for rain rendering in real-time. Computers & Graphics 50, 61–70 (2015) Starik and Werman [2003] Starik, S., Werman, M.: Simulation of rain in videos. In: Texture Workshop, ICCV, vol. 2, pp. 406–409 (2003) Wang et al. [2006] Wang, L., Lin, Z., Fang, T., Yang, X., Yu, X., Kang, S.B.: Real-time rendering of realistic rain. In: ACM SIGGRAPH 2006 Sketches, p. 156 (2006) Wei et al. [2019] Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Yang, W., Tan, R.T., Feng, J., Liu, J., Guo, Z., Yan, S.: Deep joint rain detection and removal from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1357–1366 (2017) Garg and Nayar [2006] Garg, K., Nayar, S.K.: Photorealistic rendering of rain streaks. ACM Transactions on Graphics (TOG) 25(3), 996–1002 (2006) Garg and Nayar [2007] Garg, K., Nayar, S.K.: Vision and rain. International Journal of Computer Vision 75(1), 3–27 (2007) Weber et al. [2015] Weber, Y., Jolivet, V., Gilet, G., Ghazanfarpour, D.: A multiscale model for rain rendering in real-time. Computers & Graphics 50, 61–70 (2015) Starik and Werman [2003] Starik, S., Werman, M.: Simulation of rain in videos. In: Texture Workshop, ICCV, vol. 2, pp. 406–409 (2003) Wang et al. [2006] Wang, L., Lin, Z., Fang, T., Yang, X., Yu, X., Kang, S.B.: Real-time rendering of realistic rain. In: ACM SIGGRAPH 2006 Sketches, p. 156 (2006) Wei et al. [2019] Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Garg, K., Nayar, S.K.: Photorealistic rendering of rain streaks. ACM Transactions on Graphics (TOG) 25(3), 996–1002 (2006) Garg and Nayar [2007] Garg, K., Nayar, S.K.: Vision and rain. International Journal of Computer Vision 75(1), 3–27 (2007) Weber et al. [2015] Weber, Y., Jolivet, V., Gilet, G., Ghazanfarpour, D.: A multiscale model for rain rendering in real-time. Computers & Graphics 50, 61–70 (2015) Starik and Werman [2003] Starik, S., Werman, M.: Simulation of rain in videos. In: Texture Workshop, ICCV, vol. 2, pp. 406–409 (2003) Wang et al. [2006] Wang, L., Lin, Z., Fang, T., Yang, X., Yu, X., Kang, S.B.: Real-time rendering of realistic rain. In: ACM SIGGRAPH 2006 Sketches, p. 156 (2006) Wei et al. [2019] Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Garg, K., Nayar, S.K.: Vision and rain. International Journal of Computer Vision 75(1), 3–27 (2007) Weber et al. [2015] Weber, Y., Jolivet, V., Gilet, G., Ghazanfarpour, D.: A multiscale model for rain rendering in real-time. Computers & Graphics 50, 61–70 (2015) Starik and Werman [2003] Starik, S., Werman, M.: Simulation of rain in videos. In: Texture Workshop, ICCV, vol. 2, pp. 406–409 (2003) Wang et al. [2006] Wang, L., Lin, Z., Fang, T., Yang, X., Yu, X., Kang, S.B.: Real-time rendering of realistic rain. In: ACM SIGGRAPH 2006 Sketches, p. 156 (2006) Wei et al. [2019] Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weber, Y., Jolivet, V., Gilet, G., Ghazanfarpour, D.: A multiscale model for rain rendering in real-time. Computers & Graphics 50, 61–70 (2015) Starik and Werman [2003] Starik, S., Werman, M.: Simulation of rain in videos. In: Texture Workshop, ICCV, vol. 2, pp. 406–409 (2003) Wang et al. [2006] Wang, L., Lin, Z., Fang, T., Yang, X., Yu, X., Kang, S.B.: Real-time rendering of realistic rain. In: ACM SIGGRAPH 2006 Sketches, p. 156 (2006) Wei et al. [2019] Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Starik, S., Werman, M.: Simulation of rain in videos. In: Texture Workshop, ICCV, vol. 2, pp. 406–409 (2003) Wang et al. [2006] Wang, L., Lin, Z., Fang, T., Yang, X., Yu, X., Kang, S.B.: Real-time rendering of realistic rain. In: ACM SIGGRAPH 2006 Sketches, p. 156 (2006) Wei et al. [2019] Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, L., Lin, Z., Fang, T., Yang, X., Yu, X., Kang, S.B.: Real-time rendering of realistic rain. In: ACM SIGGRAPH 2006 Sketches, p. 156 (2006) Wei et al. [2019] Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR
- Wang, H., Xie, Q., Wu, Y., Zhao, Q., Meng, D.: Single image rain streaks removal: a review and an exploration. International Journal of Machine Learning and Cybernetics 11(4), 853–872 (2020) Bossu et al. [2011] Bossu, J., Hautière, N., Tarel, J.-P.: Rain or snow detection in image sequences through use of a histogram of orientation of streaks. International Journal of Computer Vision 93(3), 348–367 (2011) https://doi.org/10.1007/s11263-011-0421-7 Fu et al. [2017] Fu, X., Huang, J., Zeng, D., Huang, Y., Ding, X., Paisley, J.: Removing rain from single images via a deep detail network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3855–3863 (2017) Yang et al. [2017] Yang, W., Tan, R.T., Feng, J., Liu, J., Guo, Z., Yan, S.: Deep joint rain detection and removal from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1357–1366 (2017) Garg and Nayar [2006] Garg, K., Nayar, S.K.: Photorealistic rendering of rain streaks. ACM Transactions on Graphics (TOG) 25(3), 996–1002 (2006) Garg and Nayar [2007] Garg, K., Nayar, S.K.: Vision and rain. International Journal of Computer Vision 75(1), 3–27 (2007) Weber et al. [2015] Weber, Y., Jolivet, V., Gilet, G., Ghazanfarpour, D.: A multiscale model for rain rendering in real-time. Computers & Graphics 50, 61–70 (2015) Starik and Werman [2003] Starik, S., Werman, M.: Simulation of rain in videos. In: Texture Workshop, ICCV, vol. 2, pp. 406–409 (2003) Wang et al. [2006] Wang, L., Lin, Z., Fang, T., Yang, X., Yu, X., Kang, S.B.: Real-time rendering of realistic rain. In: ACM SIGGRAPH 2006 Sketches, p. 156 (2006) Wei et al. [2019] Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Bossu, J., Hautière, N., Tarel, J.-P.: Rain or snow detection in image sequences through use of a histogram of orientation of streaks. International Journal of Computer Vision 93(3), 348–367 (2011) https://doi.org/10.1007/s11263-011-0421-7 Fu et al. [2017] Fu, X., Huang, J., Zeng, D., Huang, Y., Ding, X., Paisley, J.: Removing rain from single images via a deep detail network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3855–3863 (2017) Yang et al. [2017] Yang, W., Tan, R.T., Feng, J., Liu, J., Guo, Z., Yan, S.: Deep joint rain detection and removal from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1357–1366 (2017) Garg and Nayar [2006] Garg, K., Nayar, S.K.: Photorealistic rendering of rain streaks. ACM Transactions on Graphics (TOG) 25(3), 996–1002 (2006) Garg and Nayar [2007] Garg, K., Nayar, S.K.: Vision and rain. International Journal of Computer Vision 75(1), 3–27 (2007) Weber et al. [2015] Weber, Y., Jolivet, V., Gilet, G., Ghazanfarpour, D.: A multiscale model for rain rendering in real-time. Computers & Graphics 50, 61–70 (2015) Starik and Werman [2003] Starik, S., Werman, M.: Simulation of rain in videos. In: Texture Workshop, ICCV, vol. 2, pp. 406–409 (2003) Wang et al. [2006] Wang, L., Lin, Z., Fang, T., Yang, X., Yu, X., Kang, S.B.: Real-time rendering of realistic rain. In: ACM SIGGRAPH 2006 Sketches, p. 156 (2006) Wei et al. [2019] Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Fu, X., Huang, J., Zeng, D., Huang, Y., Ding, X., Paisley, J.: Removing rain from single images via a deep detail network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3855–3863 (2017) Yang et al. [2017] Yang, W., Tan, R.T., Feng, J., Liu, J., Guo, Z., Yan, S.: Deep joint rain detection and removal from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1357–1366 (2017) Garg and Nayar [2006] Garg, K., Nayar, S.K.: Photorealistic rendering of rain streaks. ACM Transactions on Graphics (TOG) 25(3), 996–1002 (2006) Garg and Nayar [2007] Garg, K., Nayar, S.K.: Vision and rain. International Journal of Computer Vision 75(1), 3–27 (2007) Weber et al. [2015] Weber, Y., Jolivet, V., Gilet, G., Ghazanfarpour, D.: A multiscale model for rain rendering in real-time. Computers & Graphics 50, 61–70 (2015) Starik and Werman [2003] Starik, S., Werman, M.: Simulation of rain in videos. In: Texture Workshop, ICCV, vol. 2, pp. 406–409 (2003) Wang et al. [2006] Wang, L., Lin, Z., Fang, T., Yang, X., Yu, X., Kang, S.B.: Real-time rendering of realistic rain. In: ACM SIGGRAPH 2006 Sketches, p. 156 (2006) Wei et al. [2019] Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Yang, W., Tan, R.T., Feng, J., Liu, J., Guo, Z., Yan, S.: Deep joint rain detection and removal from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1357–1366 (2017) Garg and Nayar [2006] Garg, K., Nayar, S.K.: Photorealistic rendering of rain streaks. ACM Transactions on Graphics (TOG) 25(3), 996–1002 (2006) Garg and Nayar [2007] Garg, K., Nayar, S.K.: Vision and rain. International Journal of Computer Vision 75(1), 3–27 (2007) Weber et al. [2015] Weber, Y., Jolivet, V., Gilet, G., Ghazanfarpour, D.: A multiscale model for rain rendering in real-time. Computers & Graphics 50, 61–70 (2015) Starik and Werman [2003] Starik, S., Werman, M.: Simulation of rain in videos. In: Texture Workshop, ICCV, vol. 2, pp. 406–409 (2003) Wang et al. [2006] Wang, L., Lin, Z., Fang, T., Yang, X., Yu, X., Kang, S.B.: Real-time rendering of realistic rain. In: ACM SIGGRAPH 2006 Sketches, p. 156 (2006) Wei et al. [2019] Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Garg, K., Nayar, S.K.: Photorealistic rendering of rain streaks. ACM Transactions on Graphics (TOG) 25(3), 996–1002 (2006) Garg and Nayar [2007] Garg, K., Nayar, S.K.: Vision and rain. International Journal of Computer Vision 75(1), 3–27 (2007) Weber et al. [2015] Weber, Y., Jolivet, V., Gilet, G., Ghazanfarpour, D.: A multiscale model for rain rendering in real-time. Computers & Graphics 50, 61–70 (2015) Starik and Werman [2003] Starik, S., Werman, M.: Simulation of rain in videos. In: Texture Workshop, ICCV, vol. 2, pp. 406–409 (2003) Wang et al. [2006] Wang, L., Lin, Z., Fang, T., Yang, X., Yu, X., Kang, S.B.: Real-time rendering of realistic rain. In: ACM SIGGRAPH 2006 Sketches, p. 156 (2006) Wei et al. [2019] Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Garg, K., Nayar, S.K.: Vision and rain. International Journal of Computer Vision 75(1), 3–27 (2007) Weber et al. [2015] Weber, Y., Jolivet, V., Gilet, G., Ghazanfarpour, D.: A multiscale model for rain rendering in real-time. Computers & Graphics 50, 61–70 (2015) Starik and Werman [2003] Starik, S., Werman, M.: Simulation of rain in videos. In: Texture Workshop, ICCV, vol. 2, pp. 406–409 (2003) Wang et al. [2006] Wang, L., Lin, Z., Fang, T., Yang, X., Yu, X., Kang, S.B.: Real-time rendering of realistic rain. In: ACM SIGGRAPH 2006 Sketches, p. 156 (2006) Wei et al. [2019] Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weber, Y., Jolivet, V., Gilet, G., Ghazanfarpour, D.: A multiscale model for rain rendering in real-time. Computers & Graphics 50, 61–70 (2015) Starik and Werman [2003] Starik, S., Werman, M.: Simulation of rain in videos. In: Texture Workshop, ICCV, vol. 2, pp. 406–409 (2003) Wang et al. [2006] Wang, L., Lin, Z., Fang, T., Yang, X., Yu, X., Kang, S.B.: Real-time rendering of realistic rain. In: ACM SIGGRAPH 2006 Sketches, p. 156 (2006) Wei et al. [2019] Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Starik, S., Werman, M.: Simulation of rain in videos. In: Texture Workshop, ICCV, vol. 2, pp. 406–409 (2003) Wang et al. [2006] Wang, L., Lin, Z., Fang, T., Yang, X., Yu, X., Kang, S.B.: Real-time rendering of realistic rain. In: ACM SIGGRAPH 2006 Sketches, p. 156 (2006) Wei et al. [2019] Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, L., Lin, Z., Fang, T., Yang, X., Yu, X., Kang, S.B.: Real-time rendering of realistic rain. In: ACM SIGGRAPH 2006 Sketches, p. 156 (2006) Wei et al. [2019] Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR
- Bossu, J., Hautière, N., Tarel, J.-P.: Rain or snow detection in image sequences through use of a histogram of orientation of streaks. International Journal of Computer Vision 93(3), 348–367 (2011) https://doi.org/10.1007/s11263-011-0421-7 Fu et al. [2017] Fu, X., Huang, J., Zeng, D., Huang, Y., Ding, X., Paisley, J.: Removing rain from single images via a deep detail network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3855–3863 (2017) Yang et al. [2017] Yang, W., Tan, R.T., Feng, J., Liu, J., Guo, Z., Yan, S.: Deep joint rain detection and removal from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1357–1366 (2017) Garg and Nayar [2006] Garg, K., Nayar, S.K.: Photorealistic rendering of rain streaks. ACM Transactions on Graphics (TOG) 25(3), 996–1002 (2006) Garg and Nayar [2007] Garg, K., Nayar, S.K.: Vision and rain. International Journal of Computer Vision 75(1), 3–27 (2007) Weber et al. [2015] Weber, Y., Jolivet, V., Gilet, G., Ghazanfarpour, D.: A multiscale model for rain rendering in real-time. Computers & Graphics 50, 61–70 (2015) Starik and Werman [2003] Starik, S., Werman, M.: Simulation of rain in videos. In: Texture Workshop, ICCV, vol. 2, pp. 406–409 (2003) Wang et al. [2006] Wang, L., Lin, Z., Fang, T., Yang, X., Yu, X., Kang, S.B.: Real-time rendering of realistic rain. In: ACM SIGGRAPH 2006 Sketches, p. 156 (2006) Wei et al. [2019] Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Fu, X., Huang, J., Zeng, D., Huang, Y., Ding, X., Paisley, J.: Removing rain from single images via a deep detail network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3855–3863 (2017) Yang et al. [2017] Yang, W., Tan, R.T., Feng, J., Liu, J., Guo, Z., Yan, S.: Deep joint rain detection and removal from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1357–1366 (2017) Garg and Nayar [2006] Garg, K., Nayar, S.K.: Photorealistic rendering of rain streaks. ACM Transactions on Graphics (TOG) 25(3), 996–1002 (2006) Garg and Nayar [2007] Garg, K., Nayar, S.K.: Vision and rain. International Journal of Computer Vision 75(1), 3–27 (2007) Weber et al. [2015] Weber, Y., Jolivet, V., Gilet, G., Ghazanfarpour, D.: A multiscale model for rain rendering in real-time. Computers & Graphics 50, 61–70 (2015) Starik and Werman [2003] Starik, S., Werman, M.: Simulation of rain in videos. In: Texture Workshop, ICCV, vol. 2, pp. 406–409 (2003) Wang et al. [2006] Wang, L., Lin, Z., Fang, T., Yang, X., Yu, X., Kang, S.B.: Real-time rendering of realistic rain. In: ACM SIGGRAPH 2006 Sketches, p. 156 (2006) Wei et al. [2019] Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Yang, W., Tan, R.T., Feng, J., Liu, J., Guo, Z., Yan, S.: Deep joint rain detection and removal from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1357–1366 (2017) Garg and Nayar [2006] Garg, K., Nayar, S.K.: Photorealistic rendering of rain streaks. ACM Transactions on Graphics (TOG) 25(3), 996–1002 (2006) Garg and Nayar [2007] Garg, K., Nayar, S.K.: Vision and rain. International Journal of Computer Vision 75(1), 3–27 (2007) Weber et al. [2015] Weber, Y., Jolivet, V., Gilet, G., Ghazanfarpour, D.: A multiscale model for rain rendering in real-time. Computers & Graphics 50, 61–70 (2015) Starik and Werman [2003] Starik, S., Werman, M.: Simulation of rain in videos. In: Texture Workshop, ICCV, vol. 2, pp. 406–409 (2003) Wang et al. [2006] Wang, L., Lin, Z., Fang, T., Yang, X., Yu, X., Kang, S.B.: Real-time rendering of realistic rain. In: ACM SIGGRAPH 2006 Sketches, p. 156 (2006) Wei et al. [2019] Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Garg, K., Nayar, S.K.: Photorealistic rendering of rain streaks. ACM Transactions on Graphics (TOG) 25(3), 996–1002 (2006) Garg and Nayar [2007] Garg, K., Nayar, S.K.: Vision and rain. International Journal of Computer Vision 75(1), 3–27 (2007) Weber et al. [2015] Weber, Y., Jolivet, V., Gilet, G., Ghazanfarpour, D.: A multiscale model for rain rendering in real-time. Computers & Graphics 50, 61–70 (2015) Starik and Werman [2003] Starik, S., Werman, M.: Simulation of rain in videos. In: Texture Workshop, ICCV, vol. 2, pp. 406–409 (2003) Wang et al. [2006] Wang, L., Lin, Z., Fang, T., Yang, X., Yu, X., Kang, S.B.: Real-time rendering of realistic rain. In: ACM SIGGRAPH 2006 Sketches, p. 156 (2006) Wei et al. [2019] Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Garg, K., Nayar, S.K.: Vision and rain. International Journal of Computer Vision 75(1), 3–27 (2007) Weber et al. [2015] Weber, Y., Jolivet, V., Gilet, G., Ghazanfarpour, D.: A multiscale model for rain rendering in real-time. Computers & Graphics 50, 61–70 (2015) Starik and Werman [2003] Starik, S., Werman, M.: Simulation of rain in videos. In: Texture Workshop, ICCV, vol. 2, pp. 406–409 (2003) Wang et al. [2006] Wang, L., Lin, Z., Fang, T., Yang, X., Yu, X., Kang, S.B.: Real-time rendering of realistic rain. In: ACM SIGGRAPH 2006 Sketches, p. 156 (2006) Wei et al. [2019] Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weber, Y., Jolivet, V., Gilet, G., Ghazanfarpour, D.: A multiscale model for rain rendering in real-time. Computers & Graphics 50, 61–70 (2015) Starik and Werman [2003] Starik, S., Werman, M.: Simulation of rain in videos. In: Texture Workshop, ICCV, vol. 2, pp. 406–409 (2003) Wang et al. [2006] Wang, L., Lin, Z., Fang, T., Yang, X., Yu, X., Kang, S.B.: Real-time rendering of realistic rain. In: ACM SIGGRAPH 2006 Sketches, p. 156 (2006) Wei et al. [2019] Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Starik, S., Werman, M.: Simulation of rain in videos. In: Texture Workshop, ICCV, vol. 2, pp. 406–409 (2003) Wang et al. [2006] Wang, L., Lin, Z., Fang, T., Yang, X., Yu, X., Kang, S.B.: Real-time rendering of realistic rain. In: ACM SIGGRAPH 2006 Sketches, p. 156 (2006) Wei et al. [2019] Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, L., Lin, Z., Fang, T., Yang, X., Yu, X., Kang, S.B.: Real-time rendering of realistic rain. In: ACM SIGGRAPH 2006 Sketches, p. 156 (2006) Wei et al. [2019] Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR
- Fu, X., Huang, J., Zeng, D., Huang, Y., Ding, X., Paisley, J.: Removing rain from single images via a deep detail network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3855–3863 (2017) Yang et al. [2017] Yang, W., Tan, R.T., Feng, J., Liu, J., Guo, Z., Yan, S.: Deep joint rain detection and removal from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1357–1366 (2017) Garg and Nayar [2006] Garg, K., Nayar, S.K.: Photorealistic rendering of rain streaks. ACM Transactions on Graphics (TOG) 25(3), 996–1002 (2006) Garg and Nayar [2007] Garg, K., Nayar, S.K.: Vision and rain. International Journal of Computer Vision 75(1), 3–27 (2007) Weber et al. [2015] Weber, Y., Jolivet, V., Gilet, G., Ghazanfarpour, D.: A multiscale model for rain rendering in real-time. Computers & Graphics 50, 61–70 (2015) Starik and Werman [2003] Starik, S., Werman, M.: Simulation of rain in videos. In: Texture Workshop, ICCV, vol. 2, pp. 406–409 (2003) Wang et al. [2006] Wang, L., Lin, Z., Fang, T., Yang, X., Yu, X., Kang, S.B.: Real-time rendering of realistic rain. In: ACM SIGGRAPH 2006 Sketches, p. 156 (2006) Wei et al. [2019] Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Yang, W., Tan, R.T., Feng, J., Liu, J., Guo, Z., Yan, S.: Deep joint rain detection and removal from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1357–1366 (2017) Garg and Nayar [2006] Garg, K., Nayar, S.K.: Photorealistic rendering of rain streaks. ACM Transactions on Graphics (TOG) 25(3), 996–1002 (2006) Garg and Nayar [2007] Garg, K., Nayar, S.K.: Vision and rain. International Journal of Computer Vision 75(1), 3–27 (2007) Weber et al. [2015] Weber, Y., Jolivet, V., Gilet, G., Ghazanfarpour, D.: A multiscale model for rain rendering in real-time. Computers & Graphics 50, 61–70 (2015) Starik and Werman [2003] Starik, S., Werman, M.: Simulation of rain in videos. In: Texture Workshop, ICCV, vol. 2, pp. 406–409 (2003) Wang et al. [2006] Wang, L., Lin, Z., Fang, T., Yang, X., Yu, X., Kang, S.B.: Real-time rendering of realistic rain. In: ACM SIGGRAPH 2006 Sketches, p. 156 (2006) Wei et al. [2019] Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Garg, K., Nayar, S.K.: Photorealistic rendering of rain streaks. ACM Transactions on Graphics (TOG) 25(3), 996–1002 (2006) Garg and Nayar [2007] Garg, K., Nayar, S.K.: Vision and rain. International Journal of Computer Vision 75(1), 3–27 (2007) Weber et al. [2015] Weber, Y., Jolivet, V., Gilet, G., Ghazanfarpour, D.: A multiscale model for rain rendering in real-time. Computers & Graphics 50, 61–70 (2015) Starik and Werman [2003] Starik, S., Werman, M.: Simulation of rain in videos. In: Texture Workshop, ICCV, vol. 2, pp. 406–409 (2003) Wang et al. [2006] Wang, L., Lin, Z., Fang, T., Yang, X., Yu, X., Kang, S.B.: Real-time rendering of realistic rain. In: ACM SIGGRAPH 2006 Sketches, p. 156 (2006) Wei et al. [2019] Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Garg, K., Nayar, S.K.: Vision and rain. International Journal of Computer Vision 75(1), 3–27 (2007) Weber et al. [2015] Weber, Y., Jolivet, V., Gilet, G., Ghazanfarpour, D.: A multiscale model for rain rendering in real-time. Computers & Graphics 50, 61–70 (2015) Starik and Werman [2003] Starik, S., Werman, M.: Simulation of rain in videos. In: Texture Workshop, ICCV, vol. 2, pp. 406–409 (2003) Wang et al. [2006] Wang, L., Lin, Z., Fang, T., Yang, X., Yu, X., Kang, S.B.: Real-time rendering of realistic rain. In: ACM SIGGRAPH 2006 Sketches, p. 156 (2006) Wei et al. [2019] Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weber, Y., Jolivet, V., Gilet, G., Ghazanfarpour, D.: A multiscale model for rain rendering in real-time. Computers & Graphics 50, 61–70 (2015) Starik and Werman [2003] Starik, S., Werman, M.: Simulation of rain in videos. In: Texture Workshop, ICCV, vol. 2, pp. 406–409 (2003) Wang et al. [2006] Wang, L., Lin, Z., Fang, T., Yang, X., Yu, X., Kang, S.B.: Real-time rendering of realistic rain. In: ACM SIGGRAPH 2006 Sketches, p. 156 (2006) Wei et al. [2019] Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Starik, S., Werman, M.: Simulation of rain in videos. In: Texture Workshop, ICCV, vol. 2, pp. 406–409 (2003) Wang et al. [2006] Wang, L., Lin, Z., Fang, T., Yang, X., Yu, X., Kang, S.B.: Real-time rendering of realistic rain. In: ACM SIGGRAPH 2006 Sketches, p. 156 (2006) Wei et al. [2019] Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, L., Lin, Z., Fang, T., Yang, X., Yu, X., Kang, S.B.: Real-time rendering of realistic rain. In: ACM SIGGRAPH 2006 Sketches, p. 156 (2006) Wei et al. [2019] Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR
- Yang, W., Tan, R.T., Feng, J., Liu, J., Guo, Z., Yan, S.: Deep joint rain detection and removal from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1357–1366 (2017) Garg and Nayar [2006] Garg, K., Nayar, S.K.: Photorealistic rendering of rain streaks. ACM Transactions on Graphics (TOG) 25(3), 996–1002 (2006) Garg and Nayar [2007] Garg, K., Nayar, S.K.: Vision and rain. International Journal of Computer Vision 75(1), 3–27 (2007) Weber et al. [2015] Weber, Y., Jolivet, V., Gilet, G., Ghazanfarpour, D.: A multiscale model for rain rendering in real-time. Computers & Graphics 50, 61–70 (2015) Starik and Werman [2003] Starik, S., Werman, M.: Simulation of rain in videos. In: Texture Workshop, ICCV, vol. 2, pp. 406–409 (2003) Wang et al. [2006] Wang, L., Lin, Z., Fang, T., Yang, X., Yu, X., Kang, S.B.: Real-time rendering of realistic rain. In: ACM SIGGRAPH 2006 Sketches, p. 156 (2006) Wei et al. [2019] Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Garg, K., Nayar, S.K.: Photorealistic rendering of rain streaks. ACM Transactions on Graphics (TOG) 25(3), 996–1002 (2006) Garg and Nayar [2007] Garg, K., Nayar, S.K.: Vision and rain. International Journal of Computer Vision 75(1), 3–27 (2007) Weber et al. [2015] Weber, Y., Jolivet, V., Gilet, G., Ghazanfarpour, D.: A multiscale model for rain rendering in real-time. Computers & Graphics 50, 61–70 (2015) Starik and Werman [2003] Starik, S., Werman, M.: Simulation of rain in videos. In: Texture Workshop, ICCV, vol. 2, pp. 406–409 (2003) Wang et al. [2006] Wang, L., Lin, Z., Fang, T., Yang, X., Yu, X., Kang, S.B.: Real-time rendering of realistic rain. In: ACM SIGGRAPH 2006 Sketches, p. 156 (2006) Wei et al. [2019] Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Garg, K., Nayar, S.K.: Vision and rain. International Journal of Computer Vision 75(1), 3–27 (2007) Weber et al. [2015] Weber, Y., Jolivet, V., Gilet, G., Ghazanfarpour, D.: A multiscale model for rain rendering in real-time. Computers & Graphics 50, 61–70 (2015) Starik and Werman [2003] Starik, S., Werman, M.: Simulation of rain in videos. In: Texture Workshop, ICCV, vol. 2, pp. 406–409 (2003) Wang et al. [2006] Wang, L., Lin, Z., Fang, T., Yang, X., Yu, X., Kang, S.B.: Real-time rendering of realistic rain. In: ACM SIGGRAPH 2006 Sketches, p. 156 (2006) Wei et al. [2019] Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weber, Y., Jolivet, V., Gilet, G., Ghazanfarpour, D.: A multiscale model for rain rendering in real-time. Computers & Graphics 50, 61–70 (2015) Starik and Werman [2003] Starik, S., Werman, M.: Simulation of rain in videos. In: Texture Workshop, ICCV, vol. 2, pp. 406–409 (2003) Wang et al. [2006] Wang, L., Lin, Z., Fang, T., Yang, X., Yu, X., Kang, S.B.: Real-time rendering of realistic rain. In: ACM SIGGRAPH 2006 Sketches, p. 156 (2006) Wei et al. [2019] Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Starik, S., Werman, M.: Simulation of rain in videos. In: Texture Workshop, ICCV, vol. 2, pp. 406–409 (2003) Wang et al. [2006] Wang, L., Lin, Z., Fang, T., Yang, X., Yu, X., Kang, S.B.: Real-time rendering of realistic rain. In: ACM SIGGRAPH 2006 Sketches, p. 156 (2006) Wei et al. [2019] Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, L., Lin, Z., Fang, T., Yang, X., Yu, X., Kang, S.B.: Real-time rendering of realistic rain. In: ACM SIGGRAPH 2006 Sketches, p. 156 (2006) Wei et al. [2019] Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR
- Garg, K., Nayar, S.K.: Photorealistic rendering of rain streaks. ACM Transactions on Graphics (TOG) 25(3), 996–1002 (2006) Garg and Nayar [2007] Garg, K., Nayar, S.K.: Vision and rain. International Journal of Computer Vision 75(1), 3–27 (2007) Weber et al. [2015] Weber, Y., Jolivet, V., Gilet, G., Ghazanfarpour, D.: A multiscale model for rain rendering in real-time. Computers & Graphics 50, 61–70 (2015) Starik and Werman [2003] Starik, S., Werman, M.: Simulation of rain in videos. In: Texture Workshop, ICCV, vol. 2, pp. 406–409 (2003) Wang et al. [2006] Wang, L., Lin, Z., Fang, T., Yang, X., Yu, X., Kang, S.B.: Real-time rendering of realistic rain. In: ACM SIGGRAPH 2006 Sketches, p. 156 (2006) Wei et al. [2019] Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Garg, K., Nayar, S.K.: Vision and rain. International Journal of Computer Vision 75(1), 3–27 (2007) Weber et al. [2015] Weber, Y., Jolivet, V., Gilet, G., Ghazanfarpour, D.: A multiscale model for rain rendering in real-time. Computers & Graphics 50, 61–70 (2015) Starik and Werman [2003] Starik, S., Werman, M.: Simulation of rain in videos. In: Texture Workshop, ICCV, vol. 2, pp. 406–409 (2003) Wang et al. [2006] Wang, L., Lin, Z., Fang, T., Yang, X., Yu, X., Kang, S.B.: Real-time rendering of realistic rain. In: ACM SIGGRAPH 2006 Sketches, p. 156 (2006) Wei et al. [2019] Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weber, Y., Jolivet, V., Gilet, G., Ghazanfarpour, D.: A multiscale model for rain rendering in real-time. Computers & Graphics 50, 61–70 (2015) Starik and Werman [2003] Starik, S., Werman, M.: Simulation of rain in videos. In: Texture Workshop, ICCV, vol. 2, pp. 406–409 (2003) Wang et al. [2006] Wang, L., Lin, Z., Fang, T., Yang, X., Yu, X., Kang, S.B.: Real-time rendering of realistic rain. In: ACM SIGGRAPH 2006 Sketches, p. 156 (2006) Wei et al. [2019] Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Starik, S., Werman, M.: Simulation of rain in videos. In: Texture Workshop, ICCV, vol. 2, pp. 406–409 (2003) Wang et al. [2006] Wang, L., Lin, Z., Fang, T., Yang, X., Yu, X., Kang, S.B.: Real-time rendering of realistic rain. In: ACM SIGGRAPH 2006 Sketches, p. 156 (2006) Wei et al. [2019] Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, L., Lin, Z., Fang, T., Yang, X., Yu, X., Kang, S.B.: Real-time rendering of realistic rain. In: ACM SIGGRAPH 2006 Sketches, p. 156 (2006) Wei et al. [2019] Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR
- Garg, K., Nayar, S.K.: Vision and rain. International Journal of Computer Vision 75(1), 3–27 (2007) Weber et al. [2015] Weber, Y., Jolivet, V., Gilet, G., Ghazanfarpour, D.: A multiscale model for rain rendering in real-time. Computers & Graphics 50, 61–70 (2015) Starik and Werman [2003] Starik, S., Werman, M.: Simulation of rain in videos. In: Texture Workshop, ICCV, vol. 2, pp. 406–409 (2003) Wang et al. [2006] Wang, L., Lin, Z., Fang, T., Yang, X., Yu, X., Kang, S.B.: Real-time rendering of realistic rain. In: ACM SIGGRAPH 2006 Sketches, p. 156 (2006) Wei et al. [2019] Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weber, Y., Jolivet, V., Gilet, G., Ghazanfarpour, D.: A multiscale model for rain rendering in real-time. Computers & Graphics 50, 61–70 (2015) Starik and Werman [2003] Starik, S., Werman, M.: Simulation of rain in videos. In: Texture Workshop, ICCV, vol. 2, pp. 406–409 (2003) Wang et al. [2006] Wang, L., Lin, Z., Fang, T., Yang, X., Yu, X., Kang, S.B.: Real-time rendering of realistic rain. In: ACM SIGGRAPH 2006 Sketches, p. 156 (2006) Wei et al. [2019] Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Starik, S., Werman, M.: Simulation of rain in videos. In: Texture Workshop, ICCV, vol. 2, pp. 406–409 (2003) Wang et al. [2006] Wang, L., Lin, Z., Fang, T., Yang, X., Yu, X., Kang, S.B.: Real-time rendering of realistic rain. In: ACM SIGGRAPH 2006 Sketches, p. 156 (2006) Wei et al. [2019] Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, L., Lin, Z., Fang, T., Yang, X., Yu, X., Kang, S.B.: Real-time rendering of realistic rain. In: ACM SIGGRAPH 2006 Sketches, p. 156 (2006) Wei et al. [2019] Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR
- Weber, Y., Jolivet, V., Gilet, G., Ghazanfarpour, D.: A multiscale model for rain rendering in real-time. Computers & Graphics 50, 61–70 (2015) Starik and Werman [2003] Starik, S., Werman, M.: Simulation of rain in videos. In: Texture Workshop, ICCV, vol. 2, pp. 406–409 (2003) Wang et al. [2006] Wang, L., Lin, Z., Fang, T., Yang, X., Yu, X., Kang, S.B.: Real-time rendering of realistic rain. In: ACM SIGGRAPH 2006 Sketches, p. 156 (2006) Wei et al. [2019] Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Starik, S., Werman, M.: Simulation of rain in videos. In: Texture Workshop, ICCV, vol. 2, pp. 406–409 (2003) Wang et al. [2006] Wang, L., Lin, Z., Fang, T., Yang, X., Yu, X., Kang, S.B.: Real-time rendering of realistic rain. In: ACM SIGGRAPH 2006 Sketches, p. 156 (2006) Wei et al. [2019] Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, L., Lin, Z., Fang, T., Yang, X., Yu, X., Kang, S.B.: Real-time rendering of realistic rain. In: ACM SIGGRAPH 2006 Sketches, p. 156 (2006) Wei et al. [2019] Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR
- Starik, S., Werman, M.: Simulation of rain in videos. In: Texture Workshop, ICCV, vol. 2, pp. 406–409 (2003) Wang et al. [2006] Wang, L., Lin, Z., Fang, T., Yang, X., Yu, X., Kang, S.B.: Real-time rendering of realistic rain. In: ACM SIGGRAPH 2006 Sketches, p. 156 (2006) Wei et al. [2019] Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, L., Lin, Z., Fang, T., Yang, X., Yu, X., Kang, S.B.: Real-time rendering of realistic rain. In: ACM SIGGRAPH 2006 Sketches, p. 156 (2006) Wei et al. [2019] Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR
- Wang, L., Lin, Z., Fang, T., Yang, X., Yu, X., Kang, S.B.: Real-time rendering of realistic rain. In: ACM SIGGRAPH 2006 Sketches, p. 156 (2006) Wei et al. [2019] Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR
- Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019) Yasarla et al. [2020] Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR
- Yasarla, R., Sindagi, V.A., Patel, V.M.: Syn2real transfer learning for image deraining using gaussian processes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2726–2736 (2020) Goodfellow et al. [2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR
- Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014) Zhu et al. [2017] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR
- Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Isola et al. [2017] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR
- Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Wang et al. [2021] Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR
- Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021) Choi et al. [2022] Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR
- Choi, J., Kim, D.H., Lee, S., Lee, S.H., Song, B.C.: Synthesized rain images for deraining algorithms. Neurocomputing 492, 421–439 (2022) Ni et al. [2021] Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR
- Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: From removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021) Wei et al. [2021] Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR
- Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on Image Processing 30, 4788–4801 (2021) Chen et al. [2022] Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR
- Chen, X., Pan, J., Jiang, K., Li, Y., Huang, Y., Kong, C., Dai, L., Fan, Z.: Unpaired deep image deraining using dual contrastive learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2007–2016. IEEE, ??? (2022) Hu et al. [2019] Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR
- Hu, X., Fu, C.-W., Zhu, L., Heng, P.-A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019) Xie et al. [2022] Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR
- Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) Wang et al. [2019] Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR
- Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019) Li et al. [2022] Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR
- Li, W., Zhang, Q., Zhang, J., Huang, Z., Tian, X., Tao, D.: Toward real-world single image deraining: A new benchmark and beyond. arXiv preprint arXiv:2206.05514 (2022) Yang et al. [2019] Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR
- Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE transactions on pattern analysis and machine intelligence 42(6), 1377–1393 (2019) Zhang et al. [2019] Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR
- Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology 30(11), 3943–3956 (2019) Halder et al. [2019] Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR
- Halder, S.S., Lalonde, J.-F., Charette, R.d.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019) Tremblay et al. [2021] Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR
- Tremblay, M., Halder, S.S., De Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. International Journal of Computer Vision 129(2), 341–360 (2021) Pizzati et al. [2020] Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR
- Pizzati, F., Cerri, P., Charette, R.d.: Model-based occlusion disentanglement for image-to-image translation. In: European Conference on Computer Vision, pp. 447–463 (2020). Springer Ren et al. [2019] Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR
- Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: A better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019) Wang et al. [2021] Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR
- Wang, H., Xie, Q., Zhao, Q., Liang, Y., Meng, D.: Rcdnet: An interpretable rain convolutional dictionary network for single image deraining. arXiv preprint arXiv:2107.06808 (2021) Chen et al. [2023] Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR
- Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5896–5905 (2023) Ye et al. [2022] Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR
- Ye, Y., Yu, C., Chang, Y., Zhu, L., Zhao, X.-L., Yan, L., Tian, Y.: Unsupervised deraining: Where contrastive learning meets self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5821–5830 (2022) Weiler et al. [2018] Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR
- Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation equivariant cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 849–858 (2018) Weiler and Cesa [2019] Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR
- Weiler, M., Cesa, G.: General e (2)-equivariant steerable cnns. Advances in Neural Information Processing Systems 32 (2019) Li et al. [2018] Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR
- Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., Meng, D.: Video rain streak removal by multiscale convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6644–6653 (2018) Wang et al. [2020] Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR
- Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2020) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR
- He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) Nair and Hinton [2010] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR
- Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Rudin et al. [1992] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR
- Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992) Mahendran and Vedaldi [2015] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR
- Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015) Liu et al. [2021] Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR
- Liu, Y., Yue, Z., Pan, J., Su, Z.: Unpaired learning for deep image deraining with rain direction regularizer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4753–4761 (2021) Zhuang et al. [2021] Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR
- Zhuang, J.-H., Luo, Y.-S., Zhao, X.-L., Jiang, T.-X.: Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal. IEEE Signal Processing Letters 28, 2147–2151 (2021) Zhuang et al. [2022] Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR
- Zhuang, J., Luo, Y., Zhao, X., Jiang, T., Guo, B.: Uconnet: Unsupervised controllable network for image and video deraining. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5436–5445 (2022) Gulrajani et al. [2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR
- Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Advances in neural information processing systems 30 (2017) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR
- Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Luo et al. [2015] Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR
- Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015) Gu et al. [2017] Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR
- Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017) Romera et al. [2017] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR
- Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems 19(1), 263–272 (2017) Li et al. [2019] Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR
- Li, R., Cheong, L.-F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019) Zhang et al. [2019] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR
- Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019). PMLR