Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum Advantage of One-Way Squeezing in Enhancing Weak-Force Sensing (2403.09979v1)

Published 15 Mar 2024 in quant-ph

Abstract: Cavity optomechanical (COM) sensors, featuring efficient light-motion couplings, have been widely used for ultra sensitive measurements of various physical quantities ranging from displacements to accelerations or weak forces. Previous works, however, have mainly focused on reciprocal COM systems. Here, we propose how to further improve the performance of quantum COM sensors by breaking reciprocal symmetry in purely quantum regime. Specifically, we consider a spinning COM resonator and show that by selectively driving it in opposite directions, highly nonreciprocal optical squeezing can emerge, which in turn provides an efficient way to surpass the standard quantum limit that otherwise exists in conventional reciprocal devices. Our work confirms that breaking reciprocal symmetry, already achieved in diverse systems well beyond spinning systems, can serve as a new strategy to further enhance the abilities of advanced quantum sensors, for applications ranging from testing fundamental physical laws to practical quantum metrology.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. E. Pedrozo-Peñafiel et al., Entanglement on an optical atomic-clock transition, Nature (London) 588, 414 (2020).
  2. K. M. Backes et al., A quantum enhanced search for dark matter axions, Nature (London) 590, 238 (2021).
  3. E. Gavartin, P. Verlot, and T. J. Kippenberg, A hybrid on-chip optomechanical transducer for ultrasensitive force measurements, Nat. Nanotechnol. 7, 509 (2012).
  4. M. Tse et al., Quantum-Enhanced Advanced LIGO Detectors in the Era of Gravitational-Wave Astronomy, Phys. Rev. Lett. 123, 231107 (2019).
  5. M. J. Yap et al., Broadband reduction of quantum radiation pressure noise via squeezed light injection, Nat. Photonics 14, 19 (2020).
  6. H. Yu et al., Quantum correlations between light and the kilogram-mass mirrors of LIGO, Nature (London) 583, 43 (2020a).
  7. M. Tsang and C. M. Caves, Evading quantum mechanics: Engineering a classical subsystem within a quantum environment, Phys. Rev. X 2, 031016 (2012).
  8. Y. Shoji and T. Mizumoto, Magneto-optical non-reciprocal devices in silicon photonics, Sci. Technol. Adv. Mater. 15, 014602 (2014).
  9. Z. Yu and S. Fan, Complete optical isolation created by indirect interband photonic transitions, Nat. Photonics 3, 91 (2009).
  10. M. S. Kang, A. Butsch, and P. S. J. Russell, Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre, Nat. Photonics 5, 549 (2011).
  11. K. Xia, F. Nori, and M. Xiao, Cavity-free optical isolators and circulators using a chiral cross-kerr nonlinearity, Phys. Rev. Lett. 121, 203602 (2018a).
  12. S. Manipatruni, J. T. Robinson, and M. Lipson, Optical nonreciprocity in optomechanical structures, Phys. Rev. Lett. 102, 213903 (2009).
  13. G. B. Malykin, The sagnac effect: correct and incorrect explanations, Phys. Usp. 43, 1229 (2000).
  14. W. P. Bowen and G. J. Milburn, Quantum optomechanics (CRC press, 2015).
  15. M. Tsang and C. M. Caves, Coherent quantum-noise cancellation for optomechanical sensors, Phys. Rev. Lett. 105, 123601 (2010).
  16. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity optomechanics, Rev. Mod. Phys. 86, 1391 (2014).
  17. G. Adesso, A. Serafini, and F. Illuminati, Extremal entanglement and mixedness in continuous variable systems, Phys. Rev. A 70, 022318 (2004).
  18. K. Xia, F. Nori, and M. Xiao, Cavity-free optical isolators and circulators using a chiral cross-kerr nonlinearity, Phys. Rev. Lett. 121, 203602 (2018b).
  19. W. Ding, X. Wang, and S. Chen, Fundamental sensitivity limits for non-hermitian quantum sensors, Phys. Rev. Lett. 131, 160801 (2023).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com