Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Thermal Earth Model for the Conterminous United States Using an Interpolative Physics-Informed Graph Neural Network (InterPIGNN) (2403.09961v1)

Published 15 Mar 2024 in physics.geo-ph and cs.LG

Abstract: This study presents a data-driven spatial interpolation algorithm based on physics-informed graph neural networks used to develop national temperature-at-depth maps for the conterminous United States. The model was trained to approximately satisfy the three-dimensional heat conduction law by simultaneously predicting subsurface temperature, surface heat flow, and rock thermal conductivity. In addition to bottomhole temperature measurements, we incorporated other physical quantities as model inputs, such as depth, geographic coordinates, elevation, sediment thickness, magnetic anomaly, gravity anomaly, gamma-ray flux of radioactive elements, seismicity, and electric conductivity. We constructed surface heat flow, and temperature and thermal conductivity predictions for depths of 0-7 km at an interval of 1 km with spatial resolution of 18 km$2$ per grid cell. Our model showed superior temperature, surface heat flow and thermal conductivity mean absolute errors of 4.8{\deg} C, 5.817 mW/m$2$ and 0.022 W/(C-m)$, respectively. The predictions were visualized in two-dimensional spatial maps across the modeled depths. This thorough modeling of the Earth's thermal processes is crucial to understanding subsurface phenomena and exploiting natural underground resources.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com