Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Markovian and non-Markovian master equations versus an exactly solvable model of a qubit in a cavity (2403.09944v2)

Published 15 Mar 2024 in quant-ph and cond-mat.other

Abstract: Quantum master equations are commonly used to model the dynamics of open quantum systems, but their accuracy is rarely compared with the analytical solution of exactly solvable models. In this work, we perform such a comparison for the damped Jaynes-Cummings model of a qubit in a leaky cavity, for which an analytical solution is available in the one-excitation subspace. We consider the non-Markovian time-convolutionless master equation up to the second (Redfield) and fourth orders as well as three types of Markovian master equations: the coarse-grained, cumulant, and standard rotating-wave approximation (RWA) Lindblad equations. We compare the exact solution to these master equations for three different spectral densities: impulse, Ohmic, and triangular. We demonstrate that the coarse-grained master equation outperforms the standard RWA-based Lindblad master equation for weak coupling or high qubit frequency (relative to the spectral density high-frequency cutoff $\omega_c$), where the Markovian approximation is valid. In the presence of non-Markovian effects characterized by oscillatory, non-decaying behavior, the TCL approximation closely matches the exact solution for short evolution times (in units of $\omega_c{-1}$) even outside the regime of validity of the Markovian approximations. For long evolution times, all master equations perform poorly, as quantified in terms of the trace-norm distance from the exact solution. The fourth-order time-convolutionless master equation achieves the top performance in all cases. Our results highlight the need for reliable approximation methods to describe open-system quantum dynamics beyond the short-time limit.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. R. Alicki and K. Lendi, Quantum Dynamical Semigroups and Applications (Springer Science & Business Media, 2007).
  2. H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002).
  3. A. Rivas and S. F. Huelga, Open Quantum Systems: An Introduction, SpringerBriefs in Physics (Springer-Verlag, Berlin Heidelberg, 2012).
  4. G. Lindblad, On the generators of quantum dynamical semigroups, Comm. Math. Phys. 48, 119 (1976).
  5. V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, Completely positive dynamical semigroups of N𝑁{N}italic_N-level systems, J. Math. Phys. 17, 821 (1976).
  6. E. Mozgunov and D. Lidar, Completely positive master equation for arbitrary driving and small level spacing, Quantum 4, 227 (2020).
  7. E. T. Jaynes and F. W. Cummings, Comparison of quantum and semiclassical radiation theories with application to the beam maser, Proceedings of the IEEE 51, 89 (1963).
  8. B. M. Garraway, Nonperturbative decay of an atomic system in a cavity, Physical Review A 55, 2290 (1997).
  9. H. Carmichael, An open systems approach to quantum optics, Lecture notes in physics No. m18 (Springer-Verlag, Berlin, 1993).
  10. H.-P. Breuer, B. Kappler, and F. Petruccione, Stochastic wave-function method for non-markovian quantum master equations, Physical Review A 59, 1633 (1999).
  11. B. Vacchini and H.-P. Breuer, Exact master equations for the non-markovian decay of a qubit, Physical Review A 81, 042103 (2010).
  12. Á. Rivas, S. F. Huelga, and M. B. Plenio, Entanglement and non-markovianity of quantum evolutions, Physical review letters 105, 050403 (2010).
  13. D. A. Lidar, Z. Bihary, and K. Whaley, From completely positive maps to the quantum Markovian semigroup master equation, Chem. Phys. 268, 35 (2001).
  14. D. Bacon, D. A. Lidar, and K. B. Whaley, Robustness of decoherence-free subspaces for quantum computation, Phys. Rev. A 60, 1944 (1999).
  15. M. Gaudin, Une démonstration simplifiée du théorème de wick en mécanique statistique, Nuclear Physics 15, 89 (1960).
  16. H. C. Fogedby, Field-theoretical approach to open quantum systems and the Lindblad equation, Physical Review A 106, 022205 (2022).
  17. N. G. Van Kampen, A cumulant expansion for stochastic linear differential equations. i, Physica 74, 215 (1974a).
  18. N. G. Van Kampen, A cumulant expansion for stochastic linear differential equations. ii, Physica 74, 239 (1974b).
  19. H. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, 2002).
  20. M. Ban, Nonequilibrium dynamics of the dispersive Jaynes–Cummings model by a non-Markovian quantum master equation, Journal of Physics A: Mathematical and Theoretical 43, 335305 (2010).
  21. A. Shabani and D. A. Lidar, Completely positive post-markovian master equation via a measurement approach, Physical Review A 71, 020101 (2005).
  22. R. Alicki, D. A. Lidar, and P. Zanardi, Internal consistency of fault-tolerant quantum error correction in light of rigorous derivations of the quantum Markovian limit, Phys. Rev. A 73, 052311 (2006).
  23. F. Haddadfarshi, J. Cui, and F. Mintert, Completely positive approximate solutions of driven open quantum systems, Physical Review Letters 114, 130402 (2015).
  24. M. Yamaguchi, T. Yuge, and T. Ogawa, Markovian quantum master equation beyond adiabatic regime, Physical Review E 95, 012136 (2017).
  25. R. Dann, A. Levy, and R. Kosloff, Time-dependent markovian quantum master equation, Physical Review A 98, 052129 (2018).
  26. G. D. Meglio, M. B. Plenio, and S. F. Huelga, Time dependent markovian master equation beyond the adiabatic limit (2023), arXiv:2304.06166 [quant-ph] .
  27. F. Nathan and M. S. Rudner, Universal lindblad equation for open quantum systems, Physical Review B 102, 115109 (2020).
  28. D. Davidović, Geometric-arithmetic master equation in large and fast open quantum systems, Journal of Physics A: Mathematical and Theoretical 55, 455301 (2022).
  29. K. W. Yip, T. Albash, and D. A. Lidar, Quantum trajectories for time-dependent adiabatic master equations, Physical Review A 97, 022116 (2018).
  30. L. Campos Venuti and D. A. Lidar, Error reduction in quantum annealing using boundary cancellation: Only the end matters, Phys. Rev. A 98, 022315 (2018).
  31. M. S. Corrington, Applications of the Complex Exponential Integral, Mathematics of Computation 15, 1 (1961).

Summary

We haven't generated a summary for this paper yet.