Safety-Critical Control for Autonomous Systems: Control Barrier Functions via Reduced-Order Models (2403.09865v1)
Abstract: Modern autonomous systems, such as flying, legged, and wheeled robots, are generally characterized by high-dimensional nonlinear dynamics, which presents challenges for model-based safety-critical control design. Motivated by the success of reduced-order models in robotics, this paper presents a tutorial on constructive safety-critical control via reduced-order models and control barrier functions (CBFs). To this end, we provide a unified formulation of techniques in the literature that share a common foundation of constructing CBFs for complex systems from CBFs for much simpler systems. Such ideas are illustrated through formal results, simple numerical examples, and case studies of real-world systems to which these techniques have been experimentally applied.
- A. D. Ames, J. W. Grizzle, and P. Tabuada, “Control barrier function based quadratic programs with application to adaptive cruise control,” in Proc. Conf. Decis. Control, pp. 6271–6278, 2014.
- X. Xu, P. Tabuada, J. W. Grizzle, and A. D. Ames, “Robustness of control barrier functions for safety critical control,” in Proc. IFAC Conf. on Analysis and Design of Hybrid Syst., pp. 54–61, 2015.
- A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier function based quadratic programs for safety critical systems,” IEEE Trans. Autom. Control, vol. 62, no. 8, pp. 3861–3876, 2017.
- A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and P. Tabuada, “Control barrier functions: theory and applications,” in Proc. Eur. Control Conf., pp. 3420–3431, 2019.
- T. G. Molnar, R. K. Cosner, A. W. Singletary, W. Ubellacker, and A. D. Ames, “Model-free safety-critical control for robotic systems,” IEEE Robot. Aut. Lett., vol. 7, no. 2, pp. 944–951, 2022.
- T. G. Molnar and A. D. Ames, “Safety-critical control with bounded inputs via reduced order models,” in Proc. Amer. Control Conf., pp. 1414–1421, 2023.
- A. W. Singletary, K. Klingebiel, J. Bourne, A. Browning, P. Tokumaru, and A. D. Ames, “Comparative analysis of control barrier functions and artificial potential fields for obstacle avoidance,” in Proc. IEEE/RSJ Int. Conf. Int. Robot. and Syst., pp. 8129–8136, 2021.
- F. Blanchini and S. Miani, Set-theoretic methods in control. Springer, 2008.
- Cambridge University Press, 2017.
- L. Hewing, K. P. Wabersich, M. Menner, and M. N. Zeilinger, “Learning-based model predictive control: Toward safe learning in control,” Ann. Rev. Control, Robot. Aut. Syst., vol. 3, pp. 269–296, 2020.
- I. M. Mitchell, A. M. Bayen, and C. J. Tomlin, “A time-dependent Hamilton-Jacobi formulation of reachable sets for continuous dynamic games,” IEEE Trans. Autom. Control, vol. 50, no. 7, pp. 947–957, 2005.
- S. Bansal, M. Chen, S. Herbert, and C. J. Tomlin, “Hamilton-Jacobi reachability: A brief overview and recent advances,” in Proc. Conf. Decis. Control, pp. 2242–2253, 2017.
- P. Tabuada, Verification and control of hybrid systems: a symbolic approach. Spring Science & Business Media, 2009.
- Springer, 2017.
- K. P. Wabersich, A. J. Taylor, J. J. Choi, K. Sreenath, C. J. Tomlin, A. D. Ames, and M. N. Zeilinger, “Data-driven safety filters: Hamilton-Jacobi reachability, control barrier functions, and predictive methods for uncertain systems,” IEEE Contr. Syst. Mag., vol. 43, no. 5, pp. 137–177, 2023.
- M. Jankovic, “Robust control barrier functions for constrained stabilization of nonlinear systems,” Automatica, vol. 96, pp. 359–367, 2018.
- S. Kolathaya and A. D. Ames, “Input-to-state safety with control barrier functions,” IEEE Contr. Syst. Lett., vol. 3, no. 1, pp. 108–113, 2019.
- A. Alan, A. J. Taylor, C. R. He, G. Orosz, and A. D. Ames, “Safe controller synthesis with tunable input-to-state safe control barrier functions,” IEEE Contr. Syst. Lett., vol. 6, pp. 908–913, 2022.
- A. Alan, A. J. Taylor, C. R. He, A. D. Ames, and G. Orosz, “Control barrier functions and input-to-state safety with application to automated vehicles,” IEEE Trans. Contr. Syst. Tech., vol. 31, no. 6, pp. 2744–2759, 2023.
- A. J. Taylor and A. D. Ames, “Adaptive safety with control barrier functions,” in Proc. Amer. Control Conf., pp. 1399–1405, 2020.
- B. T. Lopez, J. J. Slotine, and J. P. How, “Robust adaptive control barrier functions: An adaptive and data-driven approach to safety,” IEEE Contr. Syst. Lett., vol. 5, no. 3, pp. 1031–1036, 2021.
- M. H. Cohen and C. Belta, Adaptive and Learning-based Control of Safety-Critical Systems. Springer Nature, 2023.
- A. J. Taylor, A. Singletary, Y. Yue, and A. Ames, “Learning for safety-critical control with control barrier functions,” in Proc. Conf. Learning for Dyn. and Control, vol. 120 of Proceedings of Machine Learning Research, pp. 708–717, 2020.
- L. Brunke, S. Zhou, and A. P. Schoellig, “Barrier Bayesian linear regression: Online learning of control barrier conditions for safety-critical control of uncertain systems,” in Proc. Conf. Learning for Dyn. and Control, pp. 881–892, 2022.
- V. Dhiman, M. J. Khojasteh, M. Franceschetti, and N. Atanasov, “Control barriers in Bayesian learning of system dynamics,” IEEE Trans. Autom. Control, vol. 68, no. 1, pp. 214–229, 2023.
- C. Santoyo, M. Dutreix, and S. Coogan, “A barrier function approach to finite-time stochastic system verification and control,” Automatica, vol. 125, p. 109439, 2021.
- R. K. Cosner, P. Culbertson, A. J. Taylor, and A. D. Ames, “Robust safety under stochastic uncertainty with discrete-time control barrier functions,” in Robotics: Science and Syst., 2023.
- S. Dean, A. J. Taylor, R. K. Cosner, B. Recht, and A. D. Ames, “Guaranteed safety of learned perception modules via measurement-robust control barrier functions,” in Proc. Conf. Robot Learn., 2020.
- D. R. Agrawal and D. Panagou, “Safe and robust observer-controller synthesis using control barrier functions,” IEEE Contr. Syst. Lett., vol. 7, pp. 127–132, 2023.
- Y. Wang and X. Xu, “Observer-based control barrier functions for safety critical systems,” in Proc. Amer. Control Conf., pp. 709–714, 2022.
- G. Yang, C. Belta, and R. Tron, “Self-triggered control for safety critical systems using control barrier functions,” in Proc. Amer. Control Conf., pp. 4454–4459, 2019.
- A. J. Taylor, P. Ong, J. Cortés, and A. D. Ames, “Safety-critical event triggered control via input-to-state safe barrier functions,” IEEE Contr. Syst. Lett., vol. 5, no. 3, pp. 749–754, 2021.
- W. Xiao, C. Belta, and C. G. Cassandras, “Event-triggered control for safety-critical systems with unknown dynamics,” IEEE Trans. Autom. Control, vol. 68, no. 7, pp. 4143–4158, 2023.
- L. Long and J. Wang, “Safety-critical dynamic event-triggered control of nonlinear systems,” Syst. Control Lett., vol. 162, p. 105176, 2022.
- A. Ghaffari, I. Abel, D. Ricketts, S. Lerner, and M. Krstić, “Safety verification using barrier certificates with application to double integrator with input saturation and zero-order hold,” in Proc. Amer. Control Conf., pp. 4664–4669, 2018.
- J. Breeden, K. Garg, and D. Panagou, “Control barrier functions in sampled-data systems,” IEEE Contr. Syst. Lett., vol. 6, pp. 367–372, 2021.
- A. J. Taylor, V. D. Dorobantu, R. K. Cosner, Y. Yue, and A. D. Ames, “Safety of sampled-data systems with control barrier functions via approximate discrete time models,” in Proc. Conf. Decis. Control, pp. 7127–7134, 2022.
- K. Garg and D. Panagou, “Robust control barrier and control Lyapunov functions with fixed-time convergence guarantees,” in Proc. Amer. Control Conf., pp. 2292–2297, 2021.
- A. Polyakov and M. Krstic, “Finite-and fixed-time nonovershooting stabilizers and safety filters by homogeneous feedback,” IEEE Trans. Autom. Control, vol. 68, no. 11, pp. 6434–6449, 2023.
- I. Abel, D. Steeves, M. Krstić, and M. Janković, “Prescribed-time safety design for strict-feedback nonlinear systems,” IEEE Trans. Autom. Control, 2023.
- L. Lindemann and D. V. Dimarogonas, “Control barrier functions for signal temporal logic tasks,” IEEE Contr. Syst. Lett., vol. 3, no. 1, pp. 96–101, 2019.
- M. Srinivasan and S. Coogan, “Control of mobile robots using barrier functions under temporal logic specifications,” IEEE Trans. Robot, vol. 37, no. 2, pp. 363–374, 2021.
- M. H. Cohen, Z. Serlin, K. Leahy, and C. Belta, “Temporal logic guided safe model-based reinforcement learning: a hybrid systems approach,” Nonlinear Analysis: Hybrid Systems, vol. 47, p. 101295, 2023.
- Q. Nguyen and K. Sreenath, “Exponential control barrier functions for enforcing high relative-degree safety-critical constraints,” in Proc. Amer. Control Conf., pp. 322–328, 2016.
- W. Xiao and C. Belta, “High order control barrier functions,” IEEE Trans. Autom. Control, vol. 67, no. 7, pp. 3655–3662, 2022.
- M. Krstić and M. Bement, “Nonovershooting control of strict-feedback nonlinear systems,” IEEE Trans. Autom. Control, vol. 51, no. 12, pp. 1938–1943, 2006.
- Springer Nature, 2023.
- X. Tan, W. S. Cortez, and D. V. Dimarogonas, “High-order barrier functions: robustness, safety and performance-critical control,” IEEE Trans. Autom. Control, vol. 67, no. 6, pp. 3021–3028, 2022.
- A. Singletary, S. Kolathaya, and A. D. Ames, “Safety-critical kinematic control of robotic systems,” IEEE Contr. Syst. Lett., vol. 6, pp. 139–144, 2022.
- W. S. Cortez, C. K. Verginis, and D. V. Dimarogonas, “Safe, passive control for mechanical systems with application to physical human-robot interactions,” in Proc. Int. Conf. Robot. and Autom., pp. 3836–3842, 2021.
- W. S. Cortez, D. Oetomo, C. Manzie, and P. Choong, “Control barrier functions for mechanical systems: Theory and application to robotic grasping,” IEEE Trans. Contr. Syst. Tech., vol. 29, no. 2, pp. 530–545, 2021.
- W. S. Cortez and D. V. Dimarogonas, “Safe-by-design control for Euler–Lagrange systems,” Automatica, vol. 146, p. 110620, 2022.
- Wiley, 1995.
- A. J. Taylor, P. Ong, T. G. Molnar, and A. D. Ames, “Safe backstepping with control barrier functions,” in Proc. Conf. Decis. Control, pp. 5775–5782, 2022.
- J. Breeden and D. Panagou, “Robust control barrier functions under high relative degree and input constraints for satellite trajectories,” Automatica, vol. 155, p. 111109, 2023.
- T. Gurriet, M. Mote, A. Singletary, P. Nilsson, E. Feron, and A. D. Ames, “A scalable safety critical control framework for nonlinear systems,” IEEE Access, vol. 8, pp. 187249–187275, 2020.
- Y. Chen, M. Jankovic, M. Santillo, and A. D. Ames, “Backup control barrier functions: Formulation and comparative study,” in Proc. Conf. Decis. Control, pp. 6835–6841, 2021.
- J. Breeden and D. Panagou, “Predictive control barrier functions for online safety critical control,” in Proc. Conf. Decis. Control, pp. 924–931, 2022.
- K. Wabersich and M. Zeilinger, “Predictive control barrier functions: Enhanced safety mechanisms for learning-based control,” IEEE Trans. Autom. Control, vol. 68, no. 5, 2022.
- A. Clark, “Verification and synthesis of control barrier functions,” in Proc. Conf. Decis. Control, pp. 6105–6112, 2021.
- A. Clark, “A semi-algebraic framework for verification and synthesis of control barrier functions,” arXiv preprint arXiv:2209.00081, 2022.
- H. Dai and F. Permenter, “Convex synthesis and verification of control-Lyapunov and barrier functions with input constraints,” in Proc. Amer. Control Conf., pp. 4116–4123, 2023.
- P. Zhao, R. Ghabcheloo, Y. Cheng, H. Abdi, and N. Hovakimyan, “Convex synthesis of control barrier functions under input constraints,” IEEE Contr. Syst. Lett., vol. 7, pp. 3102–3107, 2023.
- J. J. Choi, D. Lee, K. Sreenath, C. J. Tomlin, and S. L. Herbert, “Robust control barrier–value functions for safety-critical control,” in Proc. Conf. Decis. Control, pp. 6814–6821, 2021.
- S. Tonkens and S. Herbert, “Refining control barrier functions through Hamilton-Jacobi reachability,” in Proc. IEEE/RSJ Int. Conf. Int. Robot. and Syst., pp. 13355–13362, 2022.
- J. J. Choi, D. Lee, B. Li, J. P. How, K. Sreenath, S. L. Herbert, and C. J. Tomlin, “A forward reachability perspective on robust control invariance and discount factors in reachability analysis,” arXiv preprint arXiv:2310.17180, 2023.
- C. Dawson, Z. Qin, S. Gao, and C. Fan, “Safe nonlinear control using robust neural Lyapunov-barrier functions,” in Proc. Conf. Robot Learn., 2022.
- C. Dawson, S. Gao, and C. Fan, “Safe control with learned certificates: A survey of neural Lyapunov, barrier, and contraction methods for robotics and control,” IEEE Trans. Robot, vol. 39, no. 3, pp. 1749–1767, 2023.
- O. So, Z. Serlin, M. Mann, J. Gonzales, K. Rutledge, N. Roy, and C. Fan, “How to train your neural control barrier function: Learning safety filters for complex input-constrained systems,” arXiv preprint arXiv:2310.15478, 2023.
- A. Robey, H. Hu, L. Lindemann, H. Zhang, D. V. Dimorogonas, S. Tu, and N. Matni, “Learning control barrier functions from expert demonstrations,” in Proc. Conf. Decis. Control, pp. 3717–3724, 2020.
- L. Lindemann, H. Hu, A. Robey, H. Zhang, D. V. Dimorogonas, S. Tu, and N. Matni, “Learning hybrid control barrier functions from data,” in Proc. Conf. Robot Learn., 2020.
- S. Zhao and Z. Sun, “Defend the practicality of single-integrator models in multi-robot coordination control,” in Proc. Int. Conf Control Autom., pp. 666–671, 2017.
- Springer, 2001.
- M. H. Raibert, Legged Robots That Balance. MIT Press, 1986.
- S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Yokoi, and H. Hirukawa, “A realtime pattern generator for biped walking,” in Proc. Int. Conf. Robot. and Autom., 2002.
- X. Xiong and A. D. Ames, “3-D underactuated bipedal walking via H-LIP based gait synthesis and stepping stabilization,” IEEE Trans. Robot, vol. 38, no. 4, pp. 2405–2425, 2022.
- A. W. Singletary, W. Guffey, T. Molnar, R. Sinnet, and A. D. Ames, “Safety-critical manipulation for collision-free food preparation,” IEEE Robot. Aut. Lett., vol. 7, no. 4, pp. 10954–10961, 2022.
- J. Kim, J. Lee, and A. D. Ames, “Safety-critical coordination for cooperative legged locomotion via control barrier functions,” in Proc. IEEE/RSJ Int. Conf. Int. Robot. and Syst., pp. 2368–2375, 2023.
- M. H. Cohen, P. Ong, G. Bahati, and A. D. Ames, “Characterizing smooth safety filters via the implicit function theorem,” IEEE Contr. Syst. Lett., vol. 7, pp. 3890–3895, 2023.
- M. W. Spong, “Partial feedback linearization of underactuated mechanical systems,” in Proc. IEEE/RSJ Int. Conf. Int. Robot. and Syst., 1994.
- H. K. Khalil, Nonlinear Systems. Prentice Hall, 3 ed., 2002.
- G. Bouligand, “Introducion a la geometrie infinitesimale directe,” Paris: Gauthiers-Villars, 1932.
- M. Nagumo, “Über die lage der integralkurven gewöhnlicher differentialgleichungen,” Proceedings of the Physico-Mathematical Society of Japan. 3rd Series, vol. 24, pp. 551–559, 1942.
- J. M. Bony, “Principe du maximum, inègalite de harnack et unicité du probléme de cauchy pour les opérateurs elliptiques dégénérés,” Annales de l’Institut Fourier, Grenoble, vol. 19, pp. 277–304, 1969.
- H. Brezis, “On a characterization of flow‐invariant sets,” Communications on Pure and Applied Mathematics, vol. 23, pp. 261–263, 1970.
- R. M. Redheffer, “The theorems of Bony and Brezis on flow-invariant sets,” The American Mathematical Monthly, vol. 79, no. 7, pp. 740–747, 1972.
- Addison-Wesley, 1983.
- R. Konda, A. D. Ames, and S. Coogan, “Characterizing safety: Minimal control barrier functions from scalar comparison systems,” IEEE Contr. Syst. Lett., vol. 5, no. 2, pp. 523–528, 2021.
- S. P. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2004.
- T. G. Molnar and A. D. Ames, “Composing control barrier functions for complex safety specifications,” IEEE Contr. Syst. Lett., vol. 7, pp. 3615–3620, 2023.
- Springer, 1997.
- P. Ong and J. Cortes, “Universal formula for smooth safe stabilization,” in Proc. Conf. Decis. Control, pp. 2373–2378, 2019.
- E. D. Sontag, “A ‘universal’ construction of Artstein’s theorem on nonlinear stabilization,” Syst. Control Lett., vol. 13, no. 2, pp. 117–123, 1989.
- R. A. Freeman and P. V. Kokotović, “Backstepping design of robust controllers for a class of nonlinear systems,” IFAC Proceedings Volumes, vol. 25, no. 13, pp. 431–436, 1992.
- W. Xiao and C. Belta, “Control barrier functions for systems with high relative degree,” in Proc. Conf. Decis. Control, pp. 474–479, 2019.
- course notes for MIT 6.832, 2023. https://underactuated.csail.mit.edu.
- P. Glotfelter, J. Cortés, and M. Egerstedt, “Nonsmooth barrier functions with applications to multi-robot systems,” IEEE Contr. Syst. Lett., vol. 1, no. 2, pp. 310–315, 2017.
- J. Usevitch, K. Garg, and D. Panagou, “Strong invariance using control barrier functions: A Clarke tangent cone approach,” in Proc. Conf. Decis. Control, pp. 2044–2049, 2020.
- P. Glotfelter, J. Cortés, and M. Egerstedt, “A nonsmooth approach to controller synthesis for Boolean specifications,” IEEE Trans. Autom. Control, vol. 66, no. 11, pp. 5160–5174, 2020.
- T. G. Molnar, S. K. Kannan, J. Cunningham, K. Dunlap, K. L. Hobbs, and A. D. Ames, “Collision avoidance and geofencing for fixed-wing aircraft with control barrier functions,” arXiv preprint arXiv:2403.02508, 2024.
- A. Singletary, A. Swann, Y. Chen, and A. D. Ames, “Onboard safety guarantees for racing drones: High-speed geofencing with control barrier functions,” IEEE Robot. Aut. Lett., vol. 7, no. 2, pp. 2897–2904, 2022.
- W. Ubellacker, N. Csomay-Shanklin, T. G. Molnar, and A. D. Ames, “Verifying safe transitions between dynamic motion primitives on legged robots,” in Proc. IEEE/RSJ Int. Conf. Int. Robot. and Syst., pp. 8477–8484, 2021.
- K. A. Hamed, J. Kim, and A. Pandala, “Quadrupedal locomotion via event-based predictive control and QP-based virtual constraints,” IEEE Robot. Aut. Lett., vol. 5, no. 3, pp. 4463–4470, 2020.
- J. Kim, R. T. Fawcett, V. R. Ramidi, A. D. Ames, and K. A. Hamed, “Layered control for cooperative locomotion of two quadrupedal robots: Centralized and distributed approaches,” IEEE Trans. Robot, vol. 39, no. 6, pp. 4728–4748, 2023.
- C. R. He, A. Alan, T. G. Molnár, S. S. Avedisov, A. H. Bell, R. Zukouski, M. Hunkler, J. Yan, and G. Orosz, “Improving fuel economy of heavy-duty vehicles in daily driving,” in Proc. Amer. Control Conf., pp. 2306–2311, 2020.
- L. Zhang and G. Orosz, “Motif-based design for connected vehicle systems in presence of heterogeneous connectivity structures and time delays,” IEEE Trans. Intell. Trans. Syst., vol. 17, no. 6, pp. 1638–1651, 2016.
- T. Gurriet, A. Singletary, J. Reher, L. Ciarletta, E. Feron, and A. Ames, “Towards a framework for realizable safety critical control through active set invariance,” in Proc. ACM/IEEE Int. Conf. Cyber-Physical Syst., pp. 98–106, 2018.
- D. Agrawal and D. Panagou, “Safe control synthesis via input constrained control barrier functions,” in Proc. Conf. Decis. Control, pp. 6113–6118, 2021.
- A. D. Ames, G. Notomista, Y. Wardi, and M. Egerstedt, “Integral control barrier functions for dynamically defined control laws,” IEEE Contr. Syst. Lett., vol. 5, no. 3, pp. 887–892, 2021.
- N. Csomay-Shanklin, A. J. Taylor, U. Rosolia, and A. D. Ames, “Multi-rate planning and control of uncertain nonlinear systems: Model predictive control and control Lyapunov functions,” in Proc. Conf. Decis. Control, pp. 3732–3739, 2022.
- A. Isidori, Nonlinear Control Systems. Springer, third ed., 1995.
- A. Isidori, “The zero dynamics of a nonlinear system: From the origin to the latest progresses of a long successful story,” European Journal of Control, vol. 19, pp. 369–378, 2013.
- CRC Press, 2007.
- M. Maggiore and L. Consolini, “Virtual holonomic constraints for euler–lagrange systems,” IEEE Trans. Autom. Control, vol. 58, no. 4, pp. 1001–1008, 2013.
- K. A. Hamed and A. D. Ames, “Nonholonomic hybrid zero dynamics for the stabilization of periodic orbits: Application to underactuated robotic walking,” IEEE Trans. Contr. Syst. Tech., vol. 28, no. 6, pp. 2689–2696, 2020.
- A. Isidori and C. Byrnes, “Output regulation of nonlinear systems,” IEEE Trans. Autom. Control, vol. 35, no. 2, pp. 131–140, 1990.
- M. D. D. Benedetto and J. W. Grizzle, “Asymptotic model matching for nonlinear systems,” IEEE Trans. Autom. Control, vol. 39, no. 8, pp. 1539–1550, 1994.
- J. W. Grizzle, M. D. D. Benedetto, and F. Lamnabhi-Lagarrigue, “Necessary conditions for asymptotic tracking in nonlinear systems,” IEEE Trans. Autom. Control, vol. 39, no. 9, pp. 1782–1794, 1994.