Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
Gemini 2.5 Pro Premium
50 tokens/sec
GPT-5 Medium
27 tokens/sec
GPT-5 High Premium
19 tokens/sec
GPT-4o
103 tokens/sec
DeepSeek R1 via Azure Premium
82 tokens/sec
GPT OSS 120B via Groq Premium
458 tokens/sec
Kimi K2 via Groq Premium
209 tokens/sec
2000 character limit reached

Stochastic gravitational wave background generated by domain wall networks (2403.09816v1)

Published 14 Mar 2024 in gr-qc, astro-ph.CO, and hep-th

Abstract: In this work we study the power spectrum of the Stochastic Gravitational Wave Background produced by standard and biased domain wall networks, using the Velocity-dependent One-Scale model to compute the cosmological evolution of their characteristic scale and root-mean-squared velocity. We consider a standard radiation + $\Lambda \rm CDM$ background and assume that a constant fraction of the energy of collapsing domain walls is emitted in the form of gravitational waves. We show that, in an expanding background, the total energy density in gravitational radiation decreases with cosmic time (after a short initial period of quick growth). We also propose a two parameter model for the scale-dependence of the frequency distribution of the gravitational waves emitted by collapsing domain walls. We determine the corresponding power spectrum of the Stochastic Gravitational Wave Background generated by domain walls, showing that it is a monotonic decreasing function of the frequency for frequencies larger than that of the peak generated by the walls that have decayed most recently. We also develop an analytical approximation to this spectrum, assuming perfect linear scaling during both the radiation and matter eras, in order to characterize the dependence of the amplitude, peak frequency and slope of the power spectrum on the model parameters.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (55)
  1. B. P. Abbott et al. (LIGO Scientific, Virgo), GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence, Phys. Rev. Lett. 116, 241103 (2016), arXiv:1606.04855 [gr-qc] .
  2. B. P. Abbott et al. (LIGO Scientific, Virgo), GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral, Phys. Rev. Lett. 119, 161101 (2017), arXiv:1710.05832 [gr-qc] .
  3. G. Agazie et al. (NANOGrav), The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background, Astrophys. J. Lett. 951, L8 (2023), arXiv:2306.16213 [astro-ph.HE] .
  4. J. Antoniadis et al. (EPTA, InPTA:), The second data release from the European Pulsar Timing Array - III. Search for gravitational wave signals, Astron. Astrophys. 678, A50 (2023), arXiv:2306.16214 [astro-ph.HE] .
  5. D. J. Reardon et al., Search for an Isotropic Gravitational-wave Background with the Parkes Pulsar Timing Array, Astrophys. J. Lett. 951, L6 (2023), arXiv:2306.16215 [astro-ph.HE] .
  6. P. A. Seoane et al. (LISA), Astrophysics with the Laser Interferometer Space Antenna, Living Rev. Rel. 26, 2 (2023), arXiv:2203.06016 [gr-qc] .
  7. P. Auclair et al. (LISA Cosmology Working Group), Cosmology with the Laser Interferometer Space Antenna, Living Rev. Rel. 26, 5 (2023), arXiv:2204.05434 [astro-ph.CO] .
  8. A. Afzal et al. (NANOGrav), The NANOGrav 15 yr Data Set: Search for Signals from New Physics, Astrophys. J. Lett. 951, L11 (2023), arXiv:2306.16219 [astro-ph.HE] .
  9. A. Vilenkin and E. P. S. Shellard, Cosmic Strings and Other Topological Defects (Cambridge University Press, 2000).
  10. L. Sousa and P. P. Avelino, Cosmic Microwave Background anisotropies generated by domain wall networks, Physical Review D 92, 083520 (2015a), arxiv:1507.01064 .
  11. Ya. B. Zeldovich, I. Yu. Kobzarev, and L. B. Okun, Cosmological consequences of the spontaneous breakdown of discrete symmetry, Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki 67, 3 (1974).
  12. S. E. Larsson, S. Sarkar, and P. L. White, Evading the cosmological domain wall problem, Phys. Rev. D 55, 5129 (1997), arXiv:hep-ph/9608319 .
  13. B. Holdom, DOMAIN WALLS. 1. AXION MODELS, Phys. Rev. D 27, 332 (1983).
  14. G. B. Gelmini, M. Gleiser, and E. W. Kolb, Cosmology of Biased Discrete Symmetry Breaking, Phys. Rev. D 39, 1558 (1989).
  15. D. Coulson, Z. Lalak, and B. A. Ovrut, Biased domain walls, Phys. Rev. D 53, 4237 (1996).
  16. P. P. Avelino, C. J. A. P. Martins, and L. Sousa, Dynamics of Biased Domain Walls and the Devaluation Mechanism, Phys. Rev. D 78, 043521 (2008), arXiv:0805.4013 [astro-ph] .
  17. N. Chen, T. Li, and Y. Wu, The gravitational waves from the collapsing domain walls in the complex singlet model, JHEP 08, 117, arXiv:2004.10148 [hep-ph] .
  18. L. Sousa and P. P. Avelino, Stochastic Gravitational Wave Background generated by Cosmic String Networks: Velocity-Dependent One-Scale model versus Scale-Invariant Evolution, Phys. Rev. D 88, 023516 (2013a), arXiv:1304.2445 [astro-ph.CO] .
  19. L. Sousa and P. P. Avelino, The Stochastic Gravitational Wave Background Generated by Cosmic String Networks: The Small-Loop Regime, Physical Review D 89, 083503 (2014), arxiv:1403.2621 .
  20. L. Sousa, P. P. Avelino, and G. S. F. Guedes, Full analytical approximation to the stochastic gravitational wave background generated by cosmic string networks, Phys. Rev. D 101, 103508 (2020a), arXiv:2002.01079 [astro-ph.CO] .
  21. N. Aghanim et al. (Planck), Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641, A6 (2020), [Erratum: Astron.Astrophys. 652, C4 (2021)], arXiv:1807.06209 [astro-ph.CO] .
  22. T. Hiramatsu, M. Kawasaki, and K. Saikawa, On the estimation of gravitational wave spectrum from cosmic domain walls, JCAP 02, 031, arXiv:1309.5001 [astro-ph.CO] .
  23. N. Kitajima and F. Takahashi, Gravitational waves from Higgs domain walls, Phys. Lett. B 745, 112 (2015), arXiv:1502.03725 [hep-ph] .
  24. C. Badger et al., Probing early Universe supercooled phase transitions with gravitational wave data, Phys. Rev. D 107, 023511 (2023), arXiv:2209.14707 [hep-ph] .
  25. M. Peyrard and M. D. Kruskal, KINK DYNAMICS IN THE HIGHLY DISCRETE SINE-GORDON SYSTEM, Physica D 14, 88 (1984).
  26. T. W. B. Kibble, Evolution of a system of cosmic strings, Nucl. Phys. B 252, 227 (1985), [Erratum: Nucl.Phys.B 261, 750 (1985)].
  27. R. R. Caldwell and B. Allen, Cosmological constraints on cosmic string gravitational radiation, Phys. Rev. D 45, 3447 (1992).
  28. M. R. DePies and C. J. Hogan, Stochastic Gravitational Wave Background from Light Cosmic Strings, Phys. Rev. D 75, 125006 (2007), arXiv:astro-ph/0702335 .
  29. S. A. Sanidas, R. A. Battye, and B. W. Stappers, Constraints on cosmic string tension imposed by the limit on the stochastic gravitational wave background from the European Pulsar Timing Array, Phys. Rev. D 85, 122003 (2012), arXiv:1201.2419 [astro-ph.CO] .
  30. L. Sousa and P. P. Avelino, Stochastic Gravitational Wave Background generated by Cosmic String Networks: Velocity-Dependent One-Scale model versus Scale-Invariant Evolution, Physical Review D 88, 023516 (2013b), arxiv:1304.2445 .
  31. L. Sousa, P. P. Avelino, and G. S. F. Guedes, Full analytical approximation to the stochastic gravitational wave background generated by cosmic string networks, Physical Review D 101, 103508 (2020b), arxiv:2002.01079 .
  32. J. J. Blanco-Pillado, K. D. Olum, and B. Shlaer, The number of cosmic string loops, Phys. Rev. D 89, 023512 (2014), arXiv:1309.6637 [astro-ph.CO] .
  33. P. Auclair et al., Probing the gravitational wave background from cosmic strings with LISA, JCAP 04, 034, arXiv:1909.00819 [astro-ph.CO] .
  34. L. Sousa and P. P. Avelino, Probing Cosmic Superstrings with Gravitational Waves, Phys. Rev. D 94, 063529 (2016), arXiv:1606.05585 [astro-ph.CO] .
  35. G. S. F. Guedes, P. P. Avelino, and L. Sousa, Signature of inflation in the stochastic gravitational wave background generated by cosmic string networks, Phys. Rev. D 98, 123505 (2018), arXiv:1809.10802 [astro-ph.CO] .
  36. C. J. A. P. Martins and E. P. S. Shellard, Quantitative String Evolution, Physical Review D 54, 2535 (1996), arxiv:hep-ph/9602271 .
  37. P. P. Avelino and L. Sousa, Domain wall network evolution in (N+1)-dimensional FRW universes, Physical Review D 83, 043530 (2011), arxiv:1101.3360 .
  38. L. Sousa and P. P. Avelino, p-brane dynamics in (N+1)-dimensional FRW universes: a unified framework, Phys. Rev. D 83, 103507 (2011a), arXiv:1103.1381 [hep-th] .
  39. L. Sousa and P. P. Avelino, The cosmological evolution of p-brane networks, Phys. Rev. D 84, 063502 (2011b), arXiv:1107.4582 [hep-th] .
  40. P. P. Avelino, Comparing parametric and non-parametric velocity-dependent one-scale models for domain wall evolution, JCAP 04, 012, arXiv:2001.06318 [astro-ph.CO] .
  41. P. P. Avelino, Parameter-free velocity-dependent one-scale model for domain walls, Physical Review D 101, 023514 (2020b), arxiv:1910.07011 .
  42. P. P. Avelino, Comparing parametric and non-parametric velocity-dependent one-scale models for domain wall evolution, Journal of Cosmology and Astroparticle Physics 2020 (04), 012, arxiv:2001.06318 .
  43. W. H. Press, B. S. Ryden, and D. N. Spergel, Dynamical Evolution of Domain Walls in an Expanding Universe, Astrophys. J. 347, 590 (1989).
  44. T. Garagounis and M. Hindmarsh, Scaling in numerical simulations of domain walls, Phys. Rev. D 68, 103506 (2003), arXiv:hep-ph/0212359 .
  45. J. C. R. E. Oliveira, C. J. A. P. Martins, and P. P. Avelino, The Cosmological evolution of domain wall networks, Phys. Rev. D 71, 083509 (2005), arXiv:hep-ph/0410356 .
  46. P. P. Avelino, J. C. R. E. Oliveira, and C. J. A. P. Martins, Understanding domain wall network evolution, Phys. Lett. B 610, 1 (2005), arXiv:hep-th/0503226 .
  47. J. R. C. C. C. Correia and C. J. A. P. Martins, General purpose graphics-processing-unit implementation of cosmological domain wall network evolution, Phys. Rev. E 96, 043310 (2017), arXiv:1710.10420 [physics.comp-ph] .
  48. L. Sousa and P. P. Avelino, Cosmic Microwave Background anisotropies generated by domain wall networks, Phys. Rev. D 92, 083520 (2015b), arXiv:1507.01064 [astro-ph.CO] .
  49. M. Gleiser and R. Roberts, Gravitational waves from collapsing vacuum domains, Phys. Rev. Lett. 81, 5497 (1998), arXiv:astro-ph/9807260 .
  50. T. Hiramatsu, M. Kawasaki, and K. Saikawa, Gravitational Waves from Collapsing Domain Walls, JCAP 05, 032, arXiv:1002.1555 [astro-ph.CO] .
  51. M. Kawasaki and K. Saikawa, Study of gravitational radiation from cosmic domain walls, JCAP 09, 008, arXiv:1102.5628 [astro-ph.CO] .
  52. K. Saikawa, A review of gravitational waves from cosmic domain walls, Universe 3, 40 (2017), arXiv:1703.02576 [hep-ph] .
  53. D. Cutting, M. Hindmarsh, and D. J. Weir, Gravitational waves from vacuum first-order phase transitions: from the envelope to the lattice, Phys. Rev. D 97, 123513 (2018), arXiv:1802.05712 [astro-ph.CO] .
  54. R.-G. Cai, S. Pi, and M. Sasaki, Universal infrared scaling of gravitational wave background spectra, Phys. Rev. D 102, 083528 (2020), arXiv:1909.13728 [astro-ph.CO] .
  55. A. Vilenkin, Cosmic Strings and Domain Walls, Phys. Rept. 121, 263 (1985).
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com