A complete logic for causal consistency (2403.09297v1)
Abstract: The $\mathrm{Caus}[-]$ construction takes a base category of ``raw materials'' and builds a category of higher order causal processes, that is a category whose types encode causal (a.k.a. signalling) constraints between collections of systems. Notable examples are categories of higher-order stochastic maps and higher-order quantum channels. Well-typedness in $\mathrm{Caus}[-]$ corresponds to a composition of processes being causally consistent, in the sense that any choice of local processes of the prescribed types yields an overall process respecting causality constraints. It follows that closed processes always occur with probability 1, ruling out e.g. causal paradoxes arising from time loops. It has previously been shown that $\mathrm{Caus}[\mathcal{C}]$ gives a model of MLL+MIX and BV logic, hence these logics give sufficient conditions for causal consistency, but they fail to provide a complete characterisation. In this follow-on work, we introduce graph types as a tool to examine causal structures over graphs in this model. We explore their properties, standard forms, and equivalent definitions; in particular, a process obeys all signalling constraints of the graph iff it is expressible as an affine combination of factorisations into local causal processes connected according to the edges of the graph. The properties of graph types are then used to prove completeness for causal consistency of a new causal logic that conservatively extends pomset logic. The crucial extra ingredient is a notion of distinguished atoms that correspond to first-order states, which only admit a flow of information in one direction. Using the fact that causal logic conservatively extends pomset logic, we finish by giving a physically-meaningful interpretation to a separating statement between pomset and BV.
- A Graphical Proof Theory of Logical Time. In Leibniz International Proceedings in Informatics, LIPIcs, volume 228, pages 22:1–22:0, 2022. doi:10.4230/LIPIcs.FSCD.2022.22.
- Simulating all nonsignaling correlations via classical or quantum theory with negative probabilities. Physical Review Letters, 111(17), 2013. doi:10.1103/PhysRevLett.111.170403.
- No-signalling constrains quantum computation with indefinite causal structure. Quantum, 8:1241, feb 2024. doi:10.22331/q-2024-02-05-1241.
- Quantum Causal Models. jun 2019. URL: arXiv:1906.10726.
- Equivalence of Grandfather and Information Antinomy Under Intervention. In Benoît Valiron, Shane Mansfield, Pablo Arrighi, and Prakash Panangaden, editors, Electronic Proceedings in Theoretical Computer Science, volume 340 of Electronic Proceedings in Theoretical Computer Science, pages 1–12. Open Publishing Association, sep 2021. doi:10.4204/EPTCS.340.1.
- Theoretical framework for higher-order quantum theory. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 475(2225), may 2019. doi:10.1098/rspa.2018.0706.
- Deep inference and probabilistic coherence spaces. Applied Categorical Structures, 2012. doi:10.1007/s10485-010-9241-0.
- Decomposing all multipartite non-signalling channels via quasiprobabilistic mixtures of local channels in generalised probabilistic theories. Journal of Physics A: Mathematical and Theoretical, 55(40):404001, oct 2022. doi:10.1088/1751-8121/ac8ea4.
- Theoretical framework for quantum networks. Physical Review A, 80(2):022339, aug 2009. doi:10.1103/PhysRevA.80.022339.
- Probabilistic theories with purification. Physical Review A, 81(6):062348, jun 2010. doi:10.1103/PhysRevA.81.062348.
- Quantum computations without definite causal structure. Physical Review A, 88(2):022318, aug 2013. doi:10.1103/PhysRevA.88.022318.
- Proof theory for full intuitionistic linear logic, bilinear logic, and MIX categories. Theory and Applications of Categories, 3(5):85–131, 1997.
- Bob Coecke. Terminality implies non-signalling. In Electronic Proceedings in Theoretical Computer Science, EPTCS, volume 172, pages 27–35, 2014. doi:10.4204/EPTCS.172.3.
- Causal Categories: Relativistically Interacting Processes. Foundations of Physics, 43(4):458–501, apr 2013. doi:10.1007/s10701-012-9646-8.
- The Produoidal Algebra of Process Decomposition. In Aniello Murano and Alexandra Silva, editors, 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024), volume 288 of Leibniz International Proceedings in Informatics (LIPIcs), pages 25:1—-25:19, Dagstuhl, Germany, 2024. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.CSL.2024.25.
- Tobias Fritz. A synthetic approach to Markov kernels, conditional independence and theorems on sufficient statistics. Advances in Mathematics, 370, 2020. doi:10.1016/j.aim.2020.107239.
- Gus Gutoski. Properties of Local Quantum Operations with Shared Entanglement. Quantum Information and Computation, 9(9-10):0739–0764, may 2008. arXiv:0805.2209.
- Toward a general theory of quantum games. Proceedings of the Annual ACM Symposium on Theory of Computing, pages 565–574, 2007. doi:10.1145/1250790.1250873.
- Coend Optics for Quantum Combs. In Electronic Proceedings in Theoretical Computer Science, EPTCS, volume 380, pages 63–76. Open Publishing Association, aug 2023. doi:10.4204/EPTCS.380.4.
- A Profunctorial Semantics for Quantum Supermaps. feb 2024. arXiv:2402.02997.
- Projective characterization of higher-order quantum transformations. arxiv.org, 2022. arXiv:2206.06206.
- Ross Horne. The consistency and complexity of multiplicative additive system virtual. Scientific Annals of Computer Science, 25(2):245–316, 2015. doi:10.7561/SACS.2015.2.245.
- Ross Horne. The sub-additives: A proof theory for probabilistic choice extending linear logic. In Leibniz International Proceedings in Informatics, LIPIcs, volume 131, 2019. doi:10.4230/LIPIcs.FSCD.2019.23.
- Robin Houston. Finite products are biproducts in a compact closed category. Journal of Pure and Applied Algebra, 2008. doi:10.1016/j.jpaa.2007.05.021.
- Glueing and orthogonality for models of linear logic. In Theoretical Computer Science, volume 294, pages 183–231, 2003. doi:10.1016/S0304-3975(01)00241-9.
- Causal Inference by String Diagram Surgery. In Foundations of Software Science and Computation Structures: 22nd International Conference, FOSSACS 2019, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2019, Prague, Czech Republic, April 6–11, 2019, Proceedings, pages 313–329. Springer, 2019. doi:10.1007/978-3-030-17127-8_18.
- Tensor products of process matrices with indefinite causal structure. Physical Review A, 97(3):032110, mar 2018. doi:10.1103/PhysRevA.97.032110.
- Ozan Kahramanoǧullari. System BV is NP-complete. Annals of Pure and Applied Logic, 152(1-3):107–121, 2008. doi:10.1016/j.apal.2007.11.005.
- Equivalence of relativistic causal structure and process terminality. aug 2017. arXiv:1708.04118.
- A categorical semantics for causal structure. Logical Methods in Computer Science, 2019. doi:10.23638/LMCS-15(3:15)2019.
- Leslie Lamport. Time, Clocks, and the Ordering of Events in a Distributed System. Communications of the ACM, 21(7):558–565, jul 1978. doi:10.1145/359545.359563.
- Causal models in string diagrams. 2023. arXiv:2304.07638.
- Paul-André Melliès. A Topological Correctness Criterion for Multiplicative Non-Commutative Logic. In Linear Logic in Computer Science, volume 316, pages 283–322. London Mathematical Society, 2010. doi:10.1017/cbo9780511550850.009.
- Fast verification of MLL proof nets via IMLL. ACM Transactions on Computational Logic, 7(3):473–498, jul 2006. doi:10.1145/1149114.1149116.
- Lê Thành Dũng Nguyên. Unique perfect matchings, forbidden transitions and proof nets for linear logic with mix. Logical Methods in Computer Science, 16(1):27:1–27:31, 2020. doi:10.23638/LMCS-16(1:27)2020.
- BV and Pomset Logic Are Not the Same. In Leibniz International Proceedings in Informatics, LIPIcs, volume 216, pages 1–32, 2022. doi:10.4230/LIPIcs.CSL.2022.32.
- A System of Interaction and Structure III: The Complexity of BV and Pomset Logic. Logical Methods in Computer Science, Volume 19,(4):25:1–25:60, dec 2023. doi:10.46298/lmcs-19(4:25)2023.
- Quantum correlations with no causal order. Nature Communications, 3(1):1–8, oct 2012. doi:10.1038/ncomms2076.
- Judea Pearl. Causality: Models, reasoning and inference. Cambridge University Press, 2nd edition.
- Quantum nonlocality as an axiom. Foundations of Physics, 24(3):379–385, mar 1994. doi:10.1007/BF02058098.
- Christian Retoré. On the relation between coherence semantics and multiplicative proof nets . Technical Report RR-2430, INRIA, dec 1994. URL: https://inria.hal.science/inria-00074245.
- Christian Retoré. Pomset logic: A non-commutative extension of classical linear logic. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 1210, pages 300–318, 1997. doi:10.1007/3-540-62688-3_43.
- Christian Retoré. Handsome proof-nets: Perfect matchings and cographs. In Theoretical Computer Science, volume 294, pages 473–488, 2003. doi:10.1016/S0304-3975(01)00175-X.
- Christian Retoré. Pomset logic: a logical and grammatical alternative to the Lambek calculus. jan 2020. arXiv:2001.02155.
- Duoidal Structures for Compositional Dependence. oct 2022. arXiv:2210.01962.
- Higher-Order Causal Theories Are Models of BV-Logic. In Stefan Szeider, Robert Ganian, and Alexandra Silva, editors, 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022), volume 241 of Leibniz International Proceedings in Informatics (LIPIcs), pages 80:1—-80:14, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.MFCS.2022.80.
- Sergey Slavnov. On noncommutative extensions of linear logic. Logical Methods in Computer Science, 15(3):25, 2019. doi:10.23638/LMCS-15(3:30)2019.
- Alwen Tiu. A system of interaction and structure II: The need for deep inference. Logical Methods in Computer Science, 2(2):1–24, 2006. doi:10.2168/LMCS-2(2:4)2006.
- Free Polycategories for Unitary Supermaps of Arbitrary Dimension. 2022. arXiv:2207.09180.
- Quantum Supermaps are Characterized by Locality. may 2022. arXiv:2205.09844.