Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dissipative Gradient Descent Ascent Method: A Control Theory Inspired Algorithm for Min-max Optimization (2403.09090v1)

Published 14 Mar 2024 in math.OC and cs.LG

Abstract: Gradient Descent Ascent (GDA) methods for min-max optimization problems typically produce oscillatory behavior that can lead to instability, e.g., in bilinear settings. To address this problem, we introduce a dissipation term into the GDA updates to dampen these oscillations. The proposed Dissipative GDA (DGDA) method can be seen as performing standard GDA on a state-augmented and regularized saddle function that does not strictly introduce additional convexity/concavity. We theoretically show the linear convergence of DGDA in the bilinear and strongly convex-strongly concave settings and assess its performance by comparing DGDA with other methods such as GDA, Extra-Gradient (EG), and Optimistic GDA. Our findings demonstrate that DGDA surpasses these methods, achieving superior convergence rates. We support our claims with two numerical examples that showcase DGDA's effectiveness in solving saddle point problems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. A. Mokhtari, A. Ozdaglar, and S. Pattathil, “A unified analysis of extra-gradient and optimistic gradient methods for saddle point problems: Proximal point approach,” in International Conference on Artificial Intelligence and Statistics.   PMLR, 2020, pp. 1497–1507.
  2. W. Azizian, I. Mitliagkas, S. Lacoste-Julien, and G. Gidel, “A tight and unified analysis of gradient-based methods for a whole spectrum of differentiable games,” in International conference on artificial intelligence and statistics.   PMLR, 2020, pp. 2863–2873.
  3. E. Gorbunov, H. Berard, G. Gidel, and N. Loizou, “Stochastic extragradient: General analysis and improved rates,” in International Conference on Artificial Intelligence and Statistics.   PMLR, 2022, pp. 7865–7901.
  4. N. Loizou, H. Berard, G. Gidel, I. Mitliagkas, and S. Lacoste-Julien, “Stochastic gradient descent-ascent and consensus optimization for smooth games: Convergence analysis under expected co-coercivity,” Advances in Neural Information Processing Systems, vol. 34, pp. 19 095–19 108, 2021.
  5. A. Beznosikov, E. Gorbunov, H. Berard, and N. Loizou, “Stochastic gradient descent-ascent: Unified theory and new efficient methods,” in International Conference on Artificial Intelligence and Statistics.   PMLR, 2023, pp. 172–235.
  6. G. Gidel, H. Berard, G. Vignoud, P. Vincent, and S. Lacoste-Julien, “A variational inequality perspective on generative adversarial networks,” arXiv preprint arXiv:1802.10551, 2018.
  7. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” Advances in neural information processing systems, vol. 27, 2014.
  8. C. Daskalakis, A. Ilyas, V. Syrgkanis, and H. Zeng, “Training gans with optimism,” arXiv preprint arXiv:1711.00141, 2017.
  9. D. Pfau and O. Vinyals, “Connecting generative adversarial networks and actor-critic methods,” arXiv preprint arXiv:1610.01945, 2016.
  10. T. Zheng, P. You, and E. Mallada, “Constrained reinforcement learning via dissipative saddle flow dynamics,” in 2022 56th Asilomar Conference on Signals, Systems, and Computers.   IEEE, 2022, pp. 1362–1366.
  11. D. Ding, C.-Y. Wei, K. Zhang, and A. Ribeiro, “Last-iterate convergent policy gradient primal-dual methods for constrained mdps,” arXiv preprint arXiv:2306.11700, 2023.
  12. J. Adler and S. Lunz, “Banach wasserstein gan,” Advances in neural information processing systems, vol. 31, 2018.
  13. Z. E. Nelson and E. Mallada, “An integral quadratic constraint framework for real-time steady-state optimization of linear time-invariant systems,” in 2018 annual American control conference (ACC).   IEEE, 2018, pp. 597–603.
  14. B. Hu and L. Lessard, “Dissipativity theory for nesterov’s accelerated method,” in International Conference on Machine Learning.   PMLR, 2017, pp. 1549–1557.
  15. M. Fazlyab, A. Ribeiro, M. Morari, and V. M. Preciado, “Analysis of optimization algorithms via integral quadratic constraints: Nonstrongly convex problems,” SIAM Journal on Optimization, vol. 28, no. 3, pp. 2654–2689, 2018.
  16. L. Lessard, B. Recht, and A. Packard, “Analysis and design of optimization algorithms via integral quadratic constraints,” SIAM Journal on Optimization, vol. 26, no. 1, pp. 57–95, 2016.
  17. G. Zhang, X. Bao, L. Lessard, and R. Grosse, “A unified analysis of first-order methods for smooth games via integral quadratic constraints,” The Journal of Machine Learning Research, vol. 22, no. 1, pp. 4648–4686, 2021.
  18. P. You and E. Mallada, “Saddle flow dynamics: Observable certificates and separable regularization,” in 2021 American Control Conference (ACC).   IEEE, 2021, pp. 4817–4823.
  19. R. T. Rockafellar, “Monotone operators and the proximal point algorithm,” SIAM journal on control and optimization, vol. 14, no. 5, pp. 877–898, 1976.
  20. P. Tseng, “On linear convergence of iterative methods for the variational inequality problem,” Journal of Computational and Applied Mathematics, vol. 60, no. 1-2, pp. 237–252, 1995.
  21. M. Wang, “Randomized linear programming solves the markov decision problem in nearly linear (sometimes sublinear) time,” Mathematics of Operations Research, vol. 45, no. 2, pp. 517–546, 2020.
  22. B. Grimmer, H. Lu, P. Worah, and V. Mirrokni, “The landscape of the proximal point method for nonconvex–nonconcave minimax optimization,” Mathematical Programming, vol. 201, no. 1-2, pp. 373–407, 2023.
  23. N. Parikh, S. Boyd et al., “Proximal algorithms,” Foundations and trends® in Optimization, vol. 1, no. 3, pp. 127–239, 2014.
  24. A. Krogh and J. Hertz, “A simple weight decay can improve generalization,” Advances in neural information processing systems, vol. 4, 1991.
  25. J. Zhang, P. Xiao, R. Sun, and Z. Luo, “A single-loop smoothed gradient descent-ascent algorithm for nonconvex-concave min-max problems,” Advances in neural information processing systems, vol. 33, pp. 7377–7389, 2020.
  26. Z. Xu, H. Zhang, Y. Xu, and G. Lan, “A unified single-loop alternating gradient projection algorithm for nonconvex–concave and convex–nonconcave minimax problems,” Mathematical Programming, pp. 1–72, 2023.
  27. J. Yang, A. Orvieto, A. Lucchi, and N. He, “Faster single-loop algorithms for minimax optimization without strong concavity,” in International Conference on Artificial Intelligence and Statistics.   PMLR, 2022, pp. 5485–5517.
  28. T. Zheng, L. Zhu, A. M.-C. So, J. Blanchet, and J. Li, “Universal gradient descent ascent method for nonconvex-nonconcave minimax optimization,” Advances in Neural Information Processing Systems, vol. 36, 2024.
  29. J. Zhang and Z.-Q. Luo, “A proximal alternating direction method of multiplier for linearly constrained nonconvex minimization,” SIAM Journal on Optimization, vol. 30, no. 3, pp. 2272–2302, 2020.
  30. A. Beznosikov, B. Polyak, E. Gorbunov, D. Kovalev, and A. Gasnikov, “Smooth monotone stochastic variational inequalities and saddle point problems: A survey,” European Mathematical Society Magazine, no. 127, pp. 15–28, 2023.
  31. G. M. Korpelevich, “The extragradient method for finding saddle points and other problems,” Matecon, vol. 12, pp. 747–756, 1976.
  32. R. T. Rockafellar, “Augmented lagrangians and applications of the proximal point algorithm in convex programming,” Mathematics of operations research, vol. 1, no. 2, pp. 97–116, 1976.
  33. G. Zhang and Y. Yu, “Convergence of gradient methods on bilinear zero-sum games,” in International Conference on Learning Representations, 2019.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets