Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Collision-Free Platooning of Mobile Robots through a Set-Theoretic Predictive Control Approach (2403.08942v1)

Published 13 Mar 2024 in cs.RO, cs.SY, and eess.SY

Abstract: This paper proposes a control solution to achieve collision-free platooning control of input-constrained mobile robots. The platooning policy is based on a leader-follower approach where the leader tracks a reference trajectory while followers track the leader's pose with an inter-agent delay. First, the leader and the follower kinematic models are feedback linearized and the platoon's error dynamics and input constraints characterized. Then, a set-theoretic model predictive control strategy is proposed to address the platooning trajectory tracking control problem. An ad-hoc collision avoidance policy is also proposed to guarantee collision avoidance amongst the agents. Finally, the effectiveness of the proposed control architecture is validated through experiments performed on a formation of Khepera IV differential drive robots

Definition Search Book Streamline Icon: https://streamlinehq.com
References (10)
  1. V. Lesch, M. Breitbach, M. Segata, C. Becker, S. Kounev, and C. Krupitzer, “An overview on approaches for coordination of platoons,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 8, pp. 10 049–10 065, 2022.
  2. W.-J. Liu, H.-F. Ding, M.-F. Ge, and X.-Y. Yao, “Cooperative control for platoon generation of vehicle-to-vehicle networks: a hierarchical nonlinear mpc algorithm,” Nonlinear Dynamics, vol. 108, no. 4, pp. 3561–3578, 2022.
  3. F. Eiras, M. Hawasly, S. V. Albrecht, and S. Ramamoorthy, “A two-stage optimization-based motion planner for safe urban driving,” IEEE Transactions on Robotics, vol. 38, no. 2, pp. 822–834, 2022.
  4. G. Franzè, G. Fedele, A. Bono, and L. D’Alfonso, “Reference tracking for multiagent systems using model predictive control,” IEEE Transactions on Control Systems Technology, vol. 31, no. 4, pp. 1884–1891, 2023.
  5. D. Angeli, A. Casavola, G. Franzè, and E. Mosca, “An ellipsoidal off-line mpc scheme for uncertain polytopic discrete-time systems,” Automatica, vol. 44, no. 12, pp. 3113–3119, 2008.
  6. G. Oriolo, A. De Luca, and M. Vendittelli, “Wmr control via dynamic feedback linearization: design, implementation, and experimental validation,” IEEE Transactions on Control Systems Technology, vol. 10, no. 6, pp. 835–852, 2002.
  7. C. Tiriolo, G. Franzè, and W. Lucia, “A receding horizon trajectory tracking strategy for input-constrained differential-drive robots via feedback linearization,” IEEE Transactions on Control Systems Technology, vol. 31, no. 3, pp. 1460–1467, 2023.
  8. C. Tiriolo and W. Lucia, “A set-theoretic control approach to the trajectory tracking problem for input-output linearized wheeled mobile robots,” IEEE Control Systems Letters, vol. 7, pp. 2347–2352, 2023.
  9. D. Wang and G. Xu, “Full-state tracking and internal dynamics of nonholonomic wheeled mobile robots,” IEEE/ASME Transactions on mechatronics, vol. 8, no. 2, pp. 203–214, 2003.
  10. E. A. Wan and R. Van Der Merwe, “The unscented kalman filter,” Kalman filtering and neural networks, pp. 221–280, 2001.

Summary

We haven't generated a summary for this paper yet.