Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-linear collision-induced breakage equation: approximate solution and error estimation (2403.08672v1)

Published 13 Mar 2024 in math.NA, cs.NA, and math.AP

Abstract: This article aims to provide approximate solutions for the non-linear collision-induced breakage equation using two different semi-analytical schemes, i.e., variational iteration method (VIM) and optimized decomposition method (ODM). The study also includes the detailed convergence analysis and error estimation for ODM in the case of product collisional ($K(\epsilon,\rho)=\epsilon\rho$) and breakage ($b(\epsilon,\rho,\sigma)=\frac{2}{\rho}$) kernels with an exponential decay initial condition. By contrasting estimated concentration function and moments with exact solutions, the novelty of the suggested approaches is presented considering three numerical examples. Interestingly, in one case, VIM provides a closed-form solution, however, finite term series solutions obtained via both schemes supply a great approximation for the concentration function and moments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. N. Brilliantov, P. Krapivsky, A. Bodrova, F. Spahn, H. Hayakawa, V. Stadnichuk, and J. Schmidt, “Size distribution of particles in saturn’ rings from aggregation and fragmentation,” Proceedings of the National Academy of Sciences, vol. 112, no. 31, pp. 9536–9541, 2015.
  2. M. Wei, Y. Zhang, Z. Fang, X. Wu, and L. Sun, “Graphite aerosol release to the containment in a water ingress accident of high temperature gas-cooled reactor (htgr),” Nuclear Engineering and Design, vol. 342, pp. 170–175, 2019.
  3. S. Chen and S. Li, “Collision-induced breakage of agglomerates in homogenous isotropic turbulence laden with adhesive particles,” Journal of Fluid Mechanics, vol. 902, 2020.
  4. Z. Cheng and S. Redner, “Scaling theory of fragmentation,” Physical Review Letters, vol. 60, no. 24, p. 2450, 1988.
  5. M. Kostoglou and A. Karabelas, “A study of the nonlinear breakage equation: analytical and asymptotic solutions,” Journal of Physics A: Mathematical and General, vol. 33, no. 6, p. 1221, 2000.
  6. R. M. Ziff, “New solutions to the fragmentation equation,” Journal of Physics A: Mathematical and General, vol. 24, no. 12, p. 2821, 1991.
  7. P. Dubovskii, V. Galkin, and I. Stewart, “Exact solutions for the coagulation-fragmentation equation,” Journal of Physics A: Mathematical and General, vol. 25, no. 18, p. 4737, 1992.
  8. P. K. Barik, A. K. Giri, and P. Laurençot, “Mass-conserving solutions to the smoluchowski coagulation equation with singular kernel,” Proceedings of the Royal Society of Edinburgh Section A: Mathematics, vol. 150, no. 4, pp. 1805–1825, 2020.
  9. M. Kostoglou and A. Karabelas, “On sectional techniques for the solution of the breakage equation,” Computers & Chemical Engineering, vol. 33, no. 1, pp. 112–121, 2009.
  10. J. Kumar, J. Saha, and E. Tsotsas, “Development and convergence analysis of a finite volume scheme for solving breakage equation,” SIAM Journal on Numerical Analysis, vol. 53, no. 4, pp. 1672–1689, 2015.
  11. R. Kumar, J. Kumar, and G. Warnecke, “Convergence analysis of a finite volume scheme for solving non-linear aggregation-breakge population balance equations,” Kinetic and Related Models, vol. 7, no. 4, pp. 713–737, 2014.
  12. M. M. Attarakih, C. Drumm, and H.-J. Bart, “Solution of the population balance equation using the sectional quadrature method of moments (sqmom),” Chemical Engineering Science, vol. 64, no. 4, pp. 742–752, 2009.
  13. N. Ahmed, G. Matthies, and L. Tobiska, “Stabilized finite element discretization applied to an operator-splitting method of population balance equations,” Applied Numerical Mathematics, vol. 70, pp. 58–79, 2013.
  14. Z. Cheng and S. Redner, “Kinetics of fragmentation,” Journal of Physics A: Mathematical and General, vol. 23, no. 7, p. 1233, 1990.
  15. M. H. Ernst and I. Pagonabarraga, “The nonlinear fragmentation equation,” Journal of Physics A: Mathematical and Theoretical, vol. 40, no. 17, p. F331, 2007.
  16. A. Das, J. Kumar, M. Dosta, and S. Heinrich, “On the approximate solution and modeling of the kernel of nonlinear breakage population balance equation,” SIAM journal on scientific computing, vol. 42, no. 6, pp. B1570–B1598, 2020.
  17. A. K. Giri and P. Laurençot, “Existence and nonexistence for the collision-induced breakage equation,” SIAM Journal on Mathematical Analysis, vol. 53, no. 4, pp. 4605–4636, 2021.
  18. A. K. Giri and P. Laurençot, “Weak solutions to the collision-induced breakage equation with dominating coagulation,” Journal of Differential Equations, vol. 280, pp. 690–729, 2021.
  19. R. M. Ziff and E. McGrady, “The kinetics of cluster fragmentation and depolymerisation,” Journal of Physics A: Mathematical and General, vol. 18, no. 15, p. 3027, 1985.
  20. E. McGrady and R. M. Ziff, “Shattering transition in fragmentation,” Physical Review Letters, vol. 58, no. 9, p. 892, 1987.
  21. J. Paul, A. Das, and J. Kumar, “Moments preserving finite volume approximations for the non-linear collisional fragmentation model,” Applied Mathematics and Computation, vol. 436, p. 127494, 2023.
  22. M. Lombart, M. Hutchison, and Y.-N. Lee, “Fragmentation with discontinuous galerkin schemes: non-linear fragmentation,” Monthly Notices of the Royal Astronomical Society, vol. 517, no. 2, pp. 2012–2027, 2022.
  23. J.-H. He, “Homotopy perturbation method: a new nonlinear analytical technique,” Applied Mathematics and Computation, vol. 135, no. 1, pp. 73–79, 2003.
  24. M. El-Shahed, “Application of he’s homotopy perturbation method to volterra’s integro-differential equation,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 6, no. 2, pp. 163–168, 2005.
  25. G. Kaur, R. Singh, M. Singh, J. Kumar, and T. Matsoukas, “Analytical approach for solving population balances: a homotopy perturbation method,” Journal of Physics A: Mathematical and Theoretical, vol. 52, no. 38, p. 385201, 2019.
  26. Y. Jiao, Y. Yamamoto, C. Dang, and Y. Hao, “An aftertreatment technique for improving the accuracy of adomian’s decomposition method,” Computers & Mathematics with Applications, vol. 43, no. 6-7, pp. 783–798, 2002.
  27. R. Singh, J. Saha, and J. Kumar, “Adomian decomposition method for solving fragmentation and aggregation population balance equations,” Journal of Applied Mathematics and Computing, vol. 48, no. 1, pp. 265–292, 2015.
  28. J. He, “A new approach to nonlinear partial differential equations,” Communications in Nonlinear Science and Numerical Simulation, vol. 2, no. 4, pp. 230–235, 1997.
  29. M. Abdou and A. Soliman, “Variational iteration method for solving burger’s and coupled burger’s equations,” Journal of computational and Applied Mathematics, vol. 181, no. 2, pp. 245–251, 2005.
  30. A.-M. Wazwaz, “A comparison between the variational iteration method and adomian decomposition method,” Journal of Computational and Applied Mathematics, vol. 207, no. 1, pp. 129–136, 2007.
  31. Z. M. Odibat, “A study on the convergence of variational iteration method,” Mathematical and Computer Modelling, vol. 51, no. 9-10, pp. 1181–1192, 2010.
  32. A. Hasseine, Z. Barhoum, M. Attarakih, and H.-J. Bart, “Analytical solutions of the particle breakage equation by the adomian decomposition and the variational iteration methods,” Advanced Powder Technology, vol. 26, no. 1, pp. 105–112, 2015.
  33. A. Hasseine, M. Attarakih, R. Belarbi, and H. J. Bart, “On the semi-analytical solution of integro-partial differential equations,” Energy Procedia, vol. 139, pp. 358–366, 2017.
  34. Z. Odibat, “An optimized decomposition method for nonlinear ordinary and partial differential equations,” Physica A: Statistical Mechanics and its Applications, vol. 541, p. 123323, 2020.
  35. S. Kaushik and R. Kumar, “A novel optimized decomposition method for smoluchowski’s aggregation equation,” Journal of Computational and Applied Mathematics, vol. 419, p. 114710, 2023.
  36. I. Stewart and E. Meister, “A global existence theorem for the general coagulation–fragmentation equation with unbounded kernels,” Mathematical Methods in the Applied Sciences, vol. 11, no. 5, pp. 627–648, 1989.

Summary

We haven't generated a summary for this paper yet.