Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Meta Reinforcement Learning for Resource Allocation in Aerial Active-RIS-assisted Networks with Rate-Splitting Multiple Access (2403.08648v1)

Published 13 Mar 2024 in cs.IT, eess.SP, and math.IT

Abstract: Mounting a reconfigurable intelligent surface (RIS) on an unmanned aerial vehicle (UAV) holds promise for improving traditional terrestrial network performance. Unlike conventional methods deploying passive RIS on UAVs, this study delves into the efficacy of an aerial active RIS (AARIS). Specifically, the downlink transmission of an AARIS network is investigated, where the base station (BS) leverages rate-splitting multiple access (RSMA) for effective interference management and benefits from the support of an AARIS for jointly amplifying and reflecting the BS's transmit signals. Considering both the non-trivial energy consumption of the active RIS and the limited energy storage of the UAV, we propose an innovative element selection strategy for optimizing the on/off status of RIS elements, which adaptively and remarkably manages the system's power consumption. To this end, a resource management problem is formulated, aiming to maximize the system energy efficiency (EE) by jointly optimizing the transmit beamforming at the BS, the element activation, the phase shift and the amplification factor at the RIS, the RSMA common data rate at users, as well as the UAV's trajectory. Due to the dynamicity nature of UAV and user mobility, a deep reinforcement learning (DRL) algorithm is designed for resource allocation, utilizing meta-learning to adaptively handle fast time-varying system dynamics. Simulations indicate that incorporating an active RIS at the UAV leads to substantial EE gain, compared to passive RIS-aided UAV. We observe the superiority of the RSMA-based AARIS system in terms of EE, compared to existing approaches adopting non-orthogonal multiple access (NOMA).

Definition Search Book Streamline Icon: https://streamlinehq.com
References (51)
  1. X. Chen, D. W. K. Ng, W. Yu, E. G. Larsson, N. Al-Dhahir, and R. Schober, “Massive access for 5G and beyond,” IEEE J. Sel. Areas Commun., vol. 39, no. 3, pp. 615–637, 2020.
  2. X. Zhang, H. Zhang, W. Du, K. Long, and G. K. Karagiannidis, “Joint resource allocation and reflecting design in IRS-UAV communication networks with SWIPT,” IEEE Trans. Wireless Commun., 2023.
  3. S. Zargari, A. Hakimi, C. Tellambura, and S. Herath, “User scheduling and trajectory optimization for energy-efficient IRS-UAV networks with SWIPT,” IEEE Trans. Veh. Technol., vol. 72, no. 2, pp. 1815–1830, 2023.
  4. Z. Li, W. Chen, H. Cao, H. Tang, K. Wang, and J. Li, “Joint communication and trajectory design for intelligent reflecting surface empowered UAV SWIPT networks,” IEEE Trans. Veh. Technol., vol. 71, no. 12, pp. 12 840–12 855, 2022.
  5. H. Zarini, N. Gholipoor, M. R. Mili, M. Rasti, H. Tabassum, and E. Hossain, “Liquid state machine-empowered reflection tracking in RIS-aided THz communications,” in GLOBECOM 2022-2022 IEEE Global Commun. Conf.   IEEE, 2022, pp. 5273–5278.
  6. M. Najafi, V. Jamali, R. Schober, and H. V. Poor, “Physics-based modeling and scalable optimization of large intelligent reflecting surfaces,” IEEE Trans. Commun., vol. 69, no. 4, pp. 2673–2691, 2020.
  7. H. Zarini, N. Gholipoor, M. R. Mili, M. Rasti, H. Tabassum, and E. Hossain, “Resource management for multiplexing eMBB and URLLC services over ris-aided thz communication,” IEEE Trans. Commun., vol. 71, no. 2, pp. 1207–1225, 2023.
  8. Q. Wu and R. Zhang, “Towards smart and reconfigurable environment: intelligent reflecting surface aided wireless network,” IEEE Commun. Mag., vol. 58, no. 1, pp. 106–112, 2019.
  9. Z. Zhang, L. Dai, X. Chen, C. Liu, F. Yang, R. Schober, and H. V. Poor, “Active RIS vs. passive RIS: Which will prevail in 6666G?” IEEE Trans. Commun., 2022.
  10. K.-W. Park, H. M. Kim, and O.-S. Shin, “A survey on intelligent-reflecting-surface-assisted UAV communications,” Energies, vol. 15, no. 14, p. 5143, 2022.
  11. B. Clerckx, Y. Mao, E. A. Jorswieck, J. Yuan, D. J. Love, E. Erkip, and D. Niyato, “A primer on rate-splitting multiple access: Tutorial, myths, and frequently asked questions,” IEEE J. Sel. Areas Commun., 2023.
  12. S. Jiao, F. Fang, X. Zhou, and H. Zhang, “Joint beamforming and phase shift design in downlink UAV networks with IRS-assisted NOMA,” J. Commun. Inf. Netw., vol. 5, no. 2, pp. 138–149, 2020.
  13. C.-H. Liu, M. A. Syed, and L. Wei, “Toward ubiquitous and flexible coverage of UAV-IRS-assisted NOMA networks,” in 2022 IEEE Wireless Commun. Netw. Conf. (WCNC).   IEEE, 2022, pp. 1749–1754.
  14. M.-H. T. Nguyen, E. Garcia-Palacios, T. Do-Duy, O. A. Dobre, and T. Q. Duong, “UAV-aided aerial reconfigurable intelligent surface communications with massive MIMO system,” IEEE Trans. Cognit. Commun. Netw., vol. 8, no. 4, pp. 1828–1838, 2022.
  15. L. Yang, P. Li, F. Meng, and S. Yu, “Performance analysis of RIS-assisted UAV communication systems,” IEEE Trans. Veh. Technol., vol. 71, no. 8, pp. 9078–9082, 2022.
  16. X. Liu, Y. Liu, and Y. Chen, “Machine learning empowered trajectory and passive beamforming design in UAV-RIS wireless networks,” IEEE J. Sel. Areas Commun., vol. 39, no. 7, pp. 2042–2055, 2020.
  17. X. Guo, Y. Chen, and Y. Wang, “Learning-based robust and secure transmission for reconfigurable intelligent surface aided millimeter wave UAV communications,” IEEE Wireless Commun. Lett., vol. 10, no. 8, pp. 1795–1799, 2021.
  18. M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming, version 2.1,” 2014.
  19. A. C. Pogaku, D.-T. Do, B. M. Lee, and N. D. Nguyen, “UAV-assisted RIS for future wireless communications: A survey on optimization and performance analysis,” IEEE Access, vol. 10, pp. 16 320–16 336, 2022.
  20. D. Xu, X. Yu, D. W. K. Ng, and R. Schober, “Resource allocation for active IRS-assisted multiuser communication systems,” in 2021 55th Asilomar Conf. Signals, Sys., Comput.   IEEE, 2021, pp. 113–119.
  21. Q. Peng, Q. Wu, G. Chen, R. Liu, S. Ma, and W. Chen, “Hybrid active-passive IRS assisted energy-efficient wireless communication,” IEEE Commun. Lett., 2023.
  22. Y. Ma, M. Li, Y. Liu, Q. Wu, and Q. Liu, “Active reconfigurable intelligent surface for energy efficiency in MU-MISO systems,” IEEE Trans. Veh. Technol., vol. 72, no. 3, pp. 4103–4107, 2022.
  23. H. Niu, Z. Lin, K. An, J. Wang, G. Zheng, N. Al-Dhahir, and K.-K. Wong, “Active RIS assisted rate-splitting multiple access network: Spectral and energy efficiency tradeoff,” IEEE J. Sel. Areas Commun., vol. 41, no. 5, pp. 1452–1467, 2023.
  24. S. Javadi, H. Shafiei, M. Forouzanmehr, A. Khalili, and H. H. Nguyen, “Resource allocation for IRS-assisted MC MISO-NOMA system,” IET Commun., vol. 16, no. 13, pp. 1617–1627, 2022.
  25. C. H. Liu, Z. Chen, J. Tang, J. Xu, and C. Piao, “Energy-efficient UAV control for effective and fair communication coverage: A deep reinforcement learning approach,” IEEE J. Sel. Areas Commun., vol. 36, no. 9, pp. 2059–2070, 2018.
  26. A. H. Arani, M. M. Azari, P. Hu, Y. Zhu, H. Yanikomeroglu, and S. Safavi-Naeini, “Reinforcement learning for energy-efficient trajectory design of UAVs,” IEEE Internet Things J., vol. 9, no. 11, pp. 9060–9070, 2021.
  27. H. Zarini, M. R. Maleki, N. Gholipoor, M. R. Mili, M. Rasti, A. Movaghar, D. W. K. Ng, and E. Hossain, “Multiplexing eMBB and mMTC services over aerial visible light communications,” pp. 2655–2661, 2023.
  28. Y. Su, X. Pang, S. Chen, X. Jiang, N. Zhao, and F. R. Yu, “Spectrum and energy efficiency optimization in IRS-assisted UAV networks,” IEEE Trans. Commun., vol. 70, no. 10, pp. 6489–6502, 2022.
  29. Y. M. Park, Y. K. Tun, Z. Han, and C. S. Hong, “Trajectory optimization and phase-shift design in IRS-assisted UAV network for smart railway,” IEEE Trans. Veh. Technol., vol. 71, no. 10, pp. 11 317–11 321, 2022.
  30. S. Jiao, X. Xie, Z. Ding et al., “Deep reinforcement learning based optimization for IRS based UAV-NOMA downlink networks,” arXiv preprint arXiv:2106.09616, 2021.
  31. Y. Cai, Z. Wei, S. Hu, C. Liu, D. W. K. Ng, and J. Yuan, “Resource allocation and 3D trajectory design for power-efficient IRS-assisted UAV-NOMA communications,” IEEE Trans. Wireless Commun., vol. 21, no. 12, pp. 10 315–10 334, 2022.
  32. P. Liu, Y. Li, W. Cheng, X. Dong, and L. Dong, “Active intelligent reflecting surface aided RSMA for millimeter-wave hybrid antenna array,” IEEE Trans. Commun., 2023.
  33. A. Rahmati, Y. Yapici, N. Rupasinghe, I. Guvenc, H. Dai, and A. Bhuyan, “Energy efficiency of RSMA and NOMA in cellular-connected mmWave UAV networks,” in 2019 IEEE Int. Conf. Commun. Work. (ICC Workshops).   IEEE, 2019, pp. 1–6.
  34. S. Pala, M. Katwe, K. Singh, B. Clerckx, and C.-P. Li, “Spectral-efficient RIS-aided RSMA URLLC: Toward mobile broadband reliable low latency communication (mBRLLC) system,” IEEE Trans. Wireless Commun., 2023.
  35. S. Javadi, S. Faramarzi, F. Zeinali, H. Zarini, M. R. Mili, P. D. Diamantoulakis, E. Jorswieck, and G. K. Karagiannidis, “SLIPT in joint dimming multi-LED OWC systems with rate splitting multiple access,” arXiv preprint arXiv:2402.16629, 2024.
  36. Y. Yuan, G. Zheng, K.-K. Wong, and K. B. Letaief, “Meta-reinforcement learning based resource allocation for dynamic V2X communications,” IEEE Trans. Veh. Technol., vol. 70, no. 9, pp. 8964–8977, 2021.
  37. T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor,” in Int. Conf. Machine Learning.   PMLR, 2018, pp. 1861–1870.
  38. S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approximation error in actor-critic methods,” in Int. Conf. Machine Learning.   PMLR, 2018, pp. 1587–1596.
  39. A. S. Kumar, L. Zhao, and X. Fernando, “Multi-agent deep reinforcement learning-empowered channel allocation in vehicular networks,” IEEE Trans. Veh. Technol., vol. 71, no. 2, pp. 1726–1736, 2021.
  40. A. Bansal, N. Agrawal, K. Singh, C.-P. Li, and S. Mumtaz, “RIS selection scheme for UAV-based multi-RIS-aided multi-user downlink network with imperfect and outdated CSI,” IEEE Trans. Commun., 2023.
  41. S. Hu, Z. Wei, Y. Cai, C. Liu, D. W. K. Ng, and J. Yuan, “Robust and secure sum-rate maximization for multi-user MISO downlink systems with self-sustainable IRS,” IEEE Trans. on Commun., vol. 69, no. 10, pp. 7032–7049, 2021.
  42. R. Zhang, K. Xiong, Y. Lu, P. Fan, D. W. K. Ng, and K. B. Letaief, “Energy efficiency maximization in RIS-assisted SWIPT networks with RSMA: A PPO-based approach,” IEEE J. Sel. Areas Commun., vol. 41, no. 5, pp. 1413–1430, 2023.
  43. Z. Yang, J. Shi, Z. Li, M. Chen, W. Xu, and M. Shikh-Bahaei, “Energy efficient rate splitting multiple access (RSMA) with reconfigurable intelligent surface,” in 2020 IEEE Int. Conf. on Commun. Workshops (ICC Workshops), 2020, pp. 1–6.
  44. A. Goldsmith, S. Jafar, N. Jindal, and S. Vishwanath, “Capacity limits of MIMO channels,” IEEE J. Sel. Areas Commun., vol. 21, no. 5, pp. 684–702, 2003.
  45. Y. Zeng, J. Xu, and R. Zhang, “Energy minimization for wireless communication with rotary-wing UAV,” IEEE trans. Wireless commun., vol. 18, no. 4, pp. 2329–2345, 2019.
  46. H. Zarini, A. Khalili, H. Tabassum, M. Rasti, and W. Saad, “Alexnet classifier and support vector regressor for scheduling and power control in multimedia heterogeneous networks,” IEEE Trans. Mobile Comput., 2021.
  47. H. Zarini, A. Khalili, H. Tabassum, and M. Rasti, “Joint transmission in qoe-driven backhaul-aware mc-noma cognitive radio network,” in GLOBECOM 2020-2020 IEEE Global Commun. Conf.   IEEE, 2020, pp. 1–6.
  48. Y. Eghbali, S. Faramarzi, S. K. Taskou, M. R. Mili, M. Rasti, and E. Hossain, “Beamforming for STAR-RIS-Aided Integrated Sensing and Communication Using Meta DRL,” IEEE Wireless Commun. Lett., 2024.
  49. C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast adaptation of deep networks,” in Int. Conf. Machine Learning.   PMLR, 2017, pp. 1126–1135.
  50. Y. Yuan, G. Zheng, K.-K. Wong, B. Ottersten, and Z.-Q. Luo, “Transfer learning and meta learning-based fast downlink beamforming adaptation,” IEEE Trans. Wireless Commun., vol. 20, no. 3, pp. 1742–1755, 2020.
  51. S.-i. Amari, “Backpropagation and stochastic gradient descent method,” Neurocomputing, vol. 5, no. 4-5, pp. 185–196, 1993.
Citations (5)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com