Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Heterogeneous Nucleation and Growth of Sessile Chemically Active Droplets (2403.08555v1)

Published 13 Mar 2024 in cond-mat.soft, physics.bio-ph, and physics.chem-ph

Abstract: Droplets are essential for spatially controlling biomolecules in cells. To work properly, cells need to control the emergence and morphology of droplets. On the one hand, driven chemical reactions can affect droplets profoundly. For instance, reactions can control how droplets nucleate and how large they grow. On the other hand, droplets coexist with various organelles and other structures inside cells, which could affect their nucleation and morphology. To understand the interplay of these two aspects, we study a continuous field theory of active phase separation. Our numerical simulations reveal that reactions suppress nucleation while attractive walls enhance it. Intriguingly, these two effects are coupled, leading to shapes that deviate substantially from the spherical caps predicted for passive systems. These distortions result from anisotropic fluxes responding to the boundary conditions dictated by the Young-Dupr\'e equation. Interestingly, an electrostatic analogy of chemical reactions confirms these effects. We thus demonstrate how driven chemical reactions affect the emergence and morphology of droplets, which could be crucial for understanding biological cells and improving technical applications, e.g., in chemical engineering.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (51)
  1. C. P. Brangwynne, C. R. Eckmann, D. S. Courson, A. Rybarska, C. Hoege, J. Gharakhani, F. Julicher,  and A. A. Hyman, “Germline p granules are liquid droplets that localize by controlled dissolution/condensation,” Science 324, 1729–1732 (2009).
  2. A. A. Hyman, C. A. Weber,  and F. Jülicher, “Liquid-liquid phase separation in biology,” Annu. Rev. Cell Dev. Biol. 30, 39–58 (2014).
  3. S. F. Banani, H. O. Lee, A. A. Hyman,  and M. K. Rosen, “Biomolecular condensates: organizers of cellular biochemistry,” Nature Reviews Molecular Cell Biology 18, 285–298 (2017).
  4. G. L. Dignon, R. B. Best,  and J. Mittal, “Biomolecular phase separation: From molecular driving forces to macroscopic properties,” Annu. Rev. Phys. Chem. 71, 53–75 (2020).
  5. Q. Su, S. Mehta,  and J. Zhang, “Liquid-liquid phase separation: Orchestrating cell signaling through time and space,” Molecular Cell 81, 4137–4146 (2021).
  6. S. F. Shimobayashi, P. Ronceray, D. W. Sanders, M. P. Haataja,  and C. P. Brangwynne, “Nucleation landscape of biomolecular condensates,” Nature 599, 503–506 (2021).
  7. T. J. Böddeker, K. A. Rosowski, D. Berchtold, L. Emmanouilidis, Y. Han, F. H. T. Allain, R. W. Style, L. Pelkmans,  and E. R. Dufresne, “Non-specific adhesive forces between filaments and membraneless organelles,” Nat. Phys.  (2022).
  8. T. J. Böddeker, A. Rusch, K. Leeners, M. P. Murrell,  and E. R. Dufresne, “Actin and microtubules position stress granules,” PRX Life 1, 023010 (2023).
  9. Y. G. Zhao and H. Zhang, “Phase separation in membrane biology: The interplay between membrane-bound organelles and membraneless condensates,” Developmental Cell 55, 30–44 (2020).
  10. H. Kusumaatmaja, A. I. May, M. Feeney, J. F. McKenna, N. Mizushima, L. Frigerio,  and R. L. Knorr, “Wetting of phase-separated droplets on plant vacuole membranes leads to a competition between tonoplast budding and nanotube formation,” Proceedings of the National Academy of Sciences 118, e2024109118 (2021).
  11. O. Beutel, R. Maraspini, K. Pombo-García, C. Martin-Lemaitre,  and A. Honigmann, “Phase separation of zonula occludens proteins drives formation of tight junctions,” Cell 179, 923–936.e11 (2019).
  12. A. Mangiarotti, N. Chen, Z. Zhao, R. Lipowsky,  and R. Dimova, “Wetting and complex remodeling of membranes by biomolecular condensates,” Nature Communications 14, 2809 (2023).
  13. K. Pombo-García, C. Martin-Lemaitre,  and A. Honigmann, “Wetting of junctional condensates along the apical interface promotes tight junction belt formation,”   (2022), 10.1101/2022.12.16.520750.
  14. P.-G. Gennes, F. Brochard-Wyart,  and D. Quéré, “Capillarity and wetting phenomena,”  (2004).
  15. T. Young, “Iii. an essay on the cohesion of fluids,” Philosophical Transactions of the Royal Society of London 95, 65–87 (1805), https://royalsocietypublishing.org/doi/pdf/10.1098/rstl.1805.0005 .
  16. J. W. Cahn, “Critical point wetting,”  66 (1977).
  17. P. G. De Gennes, “Polymer solutions near an interface. adsorption and depletion layers,” Macromolecules 14, 1637–1644 (1981).
  18. R. Zhang, A. Khalizov, L. Wang, M. Hu,  and W. Xu, “Nucleation and growth of nanoparticles in the atmosphere,” Chemical Reviews 112, 1957–2011 (2012).
  19. M. Hondele, R. Sachdev, S. Heinrich, J. Wang, P. Vallotton, B. M. A. Fontoura,  and K. Weis, “Dead-box atpases are global regulators of phase-separated organelles,” Nature 573, 144–148 (2019).
  20. J. Söding, D. Zwicker, S. Sohrabi-Jahromi, M. Boehning,  and J. Kirschbaum, “Mechanisms for active regulation of biomolecular condensates,” Trends in Cell Biology , S0962892419301795 (2019).
  21. J. Kirschbaum and D. Zwicker, “Controlling biomolecular condensates via chemical reactions,” Journal of The Royal Society Interface 18, 20210255 (2021).
  22. D. Zwicker, A. A. Hyman,  and F. Jülicher, “Suppression of ostwald ripening in active emulsions,” Physical Review E 92, 012317 (2015).
  23. D. Zwicker, R. Seyboldt, C. A. Weber, A. A. Hyman,  and F. Jülicher, “Growth and division of active droplets provides a model for protocells,” Nat. Phys. 13, 408–413 (2017).
  24. N. Ziethen, J. Kirschbaum,  and D. Zwicker, “Nucleation of chemically active droplets,” Physical Review Letters 130, 248201 (2023).
  25. S. Liese, X. Zhao, C. A. Weber,  and F. Jülicher, “Chemically active wetting,”  (2023), arXiv:2312.07239 [cond-mat.soft] .
  26. H. Cook, “Brownian motion in spinodal decomposition,” Acta Metallurgica 18, 297–306 (1970).
  27. J. W. Cahn and J. E. Hilliard, “Free energy of a nonuniform system. iii. nucleation in a two-component incompressible fluid,”  , 13.
  28. P. G. de Gennes, “Wetting: statics and dynamics,” Reviews of Modern Physics 57, 827–863 (1985).
  29. C. A. Weber, D. Zwicker, F. Jülicher,  and C. F. Lee, “Physics of active emulsions,” Reports on Progress in Physics 82, 064601 (2019), arXiv: 1806.09552.
  30. F. Jülicher, S. W. Grill,  and G. Salbreux, “Hydrodynamic theory of active matter,” Reports on Progress in Physics 81, 076601 (2018).
  31. S. R. De Groot and P. Mazur, Non-equilibrium thermodynamics (NY: Dover Publications, 1984).
  32. Solids far from equilibium, Collection Aléa-Saclay (Cambridge University Press, Cambridge ; New York, 1991).
  33. D. Zwicker, “py-pde: A python package for solving partial differential equations,” Journal of Open Source Software 5, 2158 (2020).
  34. V. Kalikmanov, “Nucleation theory,” Lecture Notes in Physics 860, 1–331 (2013).
  35. F. Liu and N. Goldenfeld, “Dynamics of phase separation in block copolymer melts,” Physical Review A 39, 4805–4810 (1989).
  36. J. J. Christensen, K. Elder,  and H. C. Fogedby, “Phase segregation dynamics of a chemically reactive binary mixture,” Physical Review E 54, R2212–R2215 (1996).
  37. C. B. Muratov, “Theory of domain patterns in systems with long-range interactions of coulomb type,” Physical Review E 66, 066108 (2002).
  38. L. Rayleigh, “On the equilibrium of liquid conducting masses charged with electricity’, lond,” Philos. Mag. 14, 184–186 (1882).
  39. R. Golestanian, “Origin of life: Division for multiplication,” Nat. Phys. 13, 323–324 (2017).
  40. S. Mao, D. Kuldinow, M. Haataja,  and A. Košmrlj, “Phase behavior and morphology of multicomponent liquid mixtures,” Soft Matter 15, 1297 (2018).
  41. D. Zwicker and L. Laan, “Evolved interactions stabilize many coexisting phases in multicomponent liquids,” Proceedings of the National Academy of Sciences 119, e2201250119 (2022).
  42. D. Zwicker, “The intertwined physics of active chemical reactions and phase separation,” Curr. Opin. Colloid Interface Sci. 61, 101606 (2022).
  43. J. Agudo-Canalejo, S. W. Schultz, H. Chino, S. M. Migliano, C. Saito, I. Koyama-Honda, H. Stenmark, A. Brech, A. I. May, N. Mizushima,  and R. L. Knorr, “Wetting regulates autophagy of phase-separated compartments and the cytosol,” Nature 591, 142–146 (2021).
  44. M. Mokbel, D. Mokbel, S. Liese, C. A. Weber,  and S. Aland, “A simulation method for the wetting dynamics of liquid droplets on deformable membranes,”  (2023).
  45. W. T. Snead and A. S. Gladfelter, “The control centers of biomolecular phase separation: How membrane surfaces, ptms, and active processes regulate condensation,” Mol. Cell  (2019), 10.1016/j.molcel.2019.09.016.
  46. F. Turci and N. B. Wilding, ‘‘Wetting transition of active brownian particles on a thin membrane,” Physical Review Letters 127, 238002 (2021).
  47. F. Turci, R. L. Jack,  and N. B. Wilding, “Partial and complete wetting of droplets of active brownian particles,”   (2023), arXiv:2310.07531 [cond-mat].
  48. S. van der Walt, J. L. Schönberger, J. Nunez-Iglesias, F. Boulogne, J. D. Warner, N. Yager, E. Gouillart, T. Yu,  and the scikit-image contributors, “scikit-image: image processing in Python,” PeerJ 2, e453 (2014).
  49. R. Goldman, “Curvature formulas for implicit curves and surfaces,” Computer Aided Geometric Design 22, 632–658 (2005).
  50. A. D. Polyanin, Handbook of linear partial differential equations for engineers and scientists (Chapman & Hall/CRC, Boca Raton, 2002).
  51. C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke,  and T. E. Oliphant, “Array programming with NumPy,” Nature 585, 357–362 (2020).
Citations (2)

Summary

We haven't generated a summary for this paper yet.