Fully discrete finite difference schemes for the Fractional Korteweg-de Vries equation (2403.08275v1)
Abstract: In this paper, we present and analyze fully discrete finite difference schemes designed for solving the initial value problem associated with the fractional Korteweg-de Vries (KdV) equation involving the fractional Laplacian. We design the scheme by introducing the discrete fractional Laplacian operator which is consistent with the continuous operator, and posses certain properties which are instrumental for the convergence analysis. Assuming the initial data (u_0 \in H{1+\alpha}(\mathbb{R})), where (\alpha \in [1,2)), our study establishes the convergence of the approximate solutions obtained by the fully discrete finite difference schemes to a classical solution of the fractional KdV equation. Theoretical results are validated through several numerical illustrations for various values of fractional exponent $\alpha$. Furthermore, we demonstrate that the Crank-Nicolson finite difference scheme preserves the inherent conserved quantities along with the improved convergence rates.
- Convergence of a finite difference method for the KdV and modified KdV equations with L2superscriptđż2L^{2}italic_L start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT data. Portugaliae Mathematica, 70 (2013), no. 1, 23â50.
- J. L. Bona and R. Smith. The initial-value problem for the Korteweg-de Vries equation. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 278 (1975), no. 1287, 555â601.
- C. CourtĂšs, F. LagoutiĂšre and F. Rousset. Error estimates of finite difference schemes for the Kortewegâde Vries equation. IMA Journal of Numerical Analysis, 40 (2020), no. 1, 628â685.
- E. Di Nezza, G. Palatucci and E. Valdinoci. Hitchhikerâs guide to the fractional Sobolev spaces. Bulletin des Sciences MathĂ©matiques, 136 (2012), no. 5, 521â573.
- Convergence of finite difference schemes for the BenjaminâOno equation. Numerische Mathematik, 134 (2016), no. 2, 249â274.
- Convergence of a higher order scheme for the Kortewegâde Vries equation. SIAM Journal on Numerical Analysis, 53 (2015), no. 4, 1963â1983.
- R. Dutta and N. H. Risebro. A note on the convergence of a CrankâNicolson scheme for the KdV equation. Int. J. Numer. Anal. Model, 13 (2016), no. 5, 567â575.
- Operator splitting for the fractional Korteweg-de Vries equation. Numerical Methods for Partial Differential Equations, 37 (2021), no. 6, 3000â3022.
- M. Dwivedi, T. Sarkar. Convergence of a conservative Crank-Nicolson finite difference scheme for the KdV equation with smooth and non-smooth initial data. arXiv preprint arXiv:2312.14454, (2023).
- M. Dwivedi, T. Sarkar. Stability and Convergence analysis of a Crank-Nicolson Galerkin scheme for the fractional Korteweg-de Vries equation. arXiv preprint arXiv:2311.06589, (2023).
- Enhanced Existence Time of Solutions to the Fractional Kortewegâde Vries Equation. SIAM Journal on Mathematical Analysis, 51 (2019), no. 4, 3298â3323.
- V. J. Ervin and J. P. Roop. Variational formulation for the stationary fractional advection dispersion equation. Numerical Methods for Partial Differential Equations: An International Journal, 22 (2006), no. 3, 558â576.
- A. S. Fokas and B. Fuchssteiner. The hierarchy of the Benjamin-Ono equation. Physics letters A, 86 (1981), no. 6-7, 341-345.
- The IVP for the dispersion generalized Benjamin-Ono equation in weighted Sobolev spaces. Ann. Inst. H. PoincarĂ© Anal. Non LinĂ©aire, 30 (2013), no. 5, 763â790.
- S. T. Galtung. Convergent CrankâNicolson Galerkin Scheme for the BenjaminâOno Equation. Discrete and dynamical systems, 38 (2018), no. 3, 1243â1268.
- A Para-differential renormalization technique for nonlinear dispersive equations. Communication in partial differential equation, 35 (2010), no. 10, 1827â1875.
- H. Holden, K. H. Karlsen and N. H. Risebro. Operator splitting Methods for Generalized KortewegâDe Vries Equations. Journal of Computational Physics, 153 (1999), no. 1, 203â222.
- Operator splitting for the KdV equation. Mathematics of Computation, 80 (2011), no. 274, 821â846.
- H. Holden, U. Koley and N. H. Risebro. Convergence of a fully discrete finite difference scheme for the Kortewegâde Vries equation. IMA Journal of Numerical Analysis, 35 (2015), no. 3, 1047â1077.
- T. Kato. On the Cauchy problem for the (generalized) Kortewegâde Vries equation. Studies in Appl. Math. Ad. in Math. Suppl. Stud., (1983), no. 8, 93â128.
- C. E. Kenig, G. Ponce and L. Vega. Well-Posedness of the Initial Value Problem for the Korteweg-de Vries Equation. Journal of the American Mathematical Society, 4 (1991), no. 2, 323â347.
- C. E. Kenig, G. Ponce and L. Vega. The Cauchy problem for the Kortewegâde Vries equation in Sobolev spaces of negative indices. Duke Mathematical Journal, 71 (1993), no. 1, 1â21.
- C. E. Kenig, G. Ponce and L. Vega. On the generalized Benjamin-Ono equation. Transactions of the American Mathematical Society, 342 (1994), no. 1, 155â172.
- C. E. Kenig, G. Ponce and L. Vega. On the unique continuation of solutions to non-local non-linear dispersive equations. Communications in Partial Differential Equations, 45 (2020), no. 8, 872â886.
- KdV is wellposed in Hâ1superscriptđ»1H^{-1}italic_H start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT. Annals of Mathematics, 190 (2019), no. 1, 249â305.
- Multilevel Monte Carlo finite difference methods for fractional conservation laws with random data. SIAM/ASA Journal on Uncertainty Quantification, 9 (2021), no.1, 65â105.
- D. J. Korteweg and G. d. Vries. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 39 (1895), no. 240, 422â443.
- J. Li and M. R. Visbal. High-order compact schemes for nonlinear dispersive waves. Journal of Scientific Computing, 26 (2006), 1â23.
- Introduction to nonlinear dispersive equations. University text, Springer, New York, (2015).
- K. Mateusz. Ten equivalent definitions of the fractional Laplace operator. Fractional Calculus and Applied Analysis, 20 (2017), no. 1, 7â51.
- L. Molinet, D. Pilod and S. Vento. On well-posedness for some dispersive perturbations of Burgersâ equation. Ann. Inst. H. PoincarĂ© Anal. Non LinĂ©aire, 35 (2018), no. 7, 1719â1756.
- G. Ponce. On the global well-posedness of the Benjamin-Ono equation. Diff. Int. Eq., 4 (1991), 527â542.
- A. Sjöberg. On the Korteweg-de Vries equation: Existence and uniqueness. Journal of Mathematical Analysis and Applications, 29 (1970), no. 3, 569â579.
- J. O. Skogestad and H. Kalisch. A boundary value problem for the KdV equation: Comparison of finite-difference and Chebyshev methods. Mathematics and Computers in Simulation, 80 (2009), no. 1, 151â163.
- T. Tao. Global well-posedness of the BenjaminâOno equation in H1âą(â)superscriptđ»1âH^{1}(\mathbb{R})italic_H start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( blackboard_R ). Journal of Hyperbolic Differential Equations, 1 (2004), no. 1, 27â49.
- V. ThomĂ©e and A. S. Vasudeva Murthy. A numerical method for the BenjaminâOno equation. BIT Numerical Mathematics, 38 (1998), 597â611.
- X. Wang, W. Dai and M. Usman. A high-order accurate finite difference scheme for the KdV equation with time-periodic boundary forcing. Applied Numerical Mathematics, 160 (2021), 102â121.
- Q. Xu and J. S. Hesthaven . Discontinuous Galerkin method for fractional convection-diffusion equations. SIAM Journal on Numerical Analysis, 52 (2014), no. 1, 405â423.
- Q. Yang, F. Liu and I. Turner. Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Applied Mathematical Modelling, 34 (2010), no. 1, 200â218.