Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Feasibility of EEG-based Motor Intention Detection for Real-Time Robot Assistive Control (2403.08149v1)

Published 13 Mar 2024 in cs.RO

Abstract: This paper explores the feasibility of employing EEG-based intention detection for real-time robot assistive control. We focus on predicting and distinguishing motor intentions of left/right arm movements by presenting: i) an offline data collection and training pipeline, used to train a classifier for left/right motion intention prediction, and ii) an online real-time prediction pipeline leveraging the trained classifier and integrated with an assistive robot. Central to our approach is a rich feature representation composed of the tangent space projection of time-windowed sample covariance matrices from EEG filtered signals and derivatives; allowing for a simple SVM classifier to achieve unprecedented accuracy and real-time performance. In pre-recorded real-time settings (160 Hz), a peak accuracy of 86.88% is achieved, surpassing prior works. In robot-in-the-loop settings, our system successfully detects intended motion solely from EEG data with 70% accuracy, triggering a robot to execute an assistive task. We provide a comprehensive evaluation of the proposed classifier.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (50)
  1. A. Sciutti, M. Mara, V. Tagliasco, and G. Sandini, “Humanizing human-robot interaction: On the importance of mutual understanding,” IEEE Technology and Society Magazine, vol. 37, pp. 22–29, 2018. [Online]. Available: https://api.semanticscholar.org/CorpusID:3812272
  2. D. Kulić and E. A. Croft, “Estimating intent for human-robot interaction,” Advanced Robotics, 2003. [Online]. Available: https://api.semanticscholar.org/CorpusID:1120056
  3. Y. Athavale and S. Krishnan, “Biosignal monitoring using wearables: Observations and opportunities,” Biomedical Signal Processing and Control, vol. 38, pp. 22–33, 2017. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1746809417300617
  4. D. Esposito, J. Centracchio, E. Andreozzi, G. D. Gargiulo, G. R. Naik, and P. Bifulco, “Biosignal-Based Human-Machine interfaces for assistance and rehabilitation: A survey,” Sensors (Basel), vol. 21, no. 20, Oct. 2021.
  5. C. Tang, Z. Xu, E. Occhipinti, W. Yi, M. Xu, S. Kumar, G. S. Virk, S. Gao, and L. G. Occhipinti, “From brain to movement: Wearables-based motion intention prediction across the human nervous system,” Nano Energy, vol. 115, p. 108712, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2211285523005499
  6. A. Mohebbi, “Human-Robot Interaction in Rehabilitation and Assistance: a Review,” Current Robotics Reports, vol. 1, no. 3, pp. 131–144, Sep. 2020. [Online]. Available: https://doi.org/10.1007/s43154-020-00015-4
  7. H. M. Lakany and B. A. Conway, “Understanding intention of movement from electroencephalograms,” Expert Systems, vol. 24, 2007. [Online]. Available: https://api.semanticscholar.org/CorpusID:5936372
  8. T. Kirschstein and R. Köhling, “What is the source of the eeg?” Clinical EEG and neuroscience, vol. 40, no. 3, pp. 146–149, 2009.
  9. K. Värbu, M. Naveed, and Y. Muhammad, “Past, present, and future of eeg-based bci applications,” Sensors (Basel, Switzerland), vol. 22, 2022. [Online]. Available: https://api.semanticscholar.org/CorpusID:248775078
  10. M. B. Khalid, N. I. Rao, I. Rizwan-i Haque, S. Munir, and F. Tahir, “Towards a brain computer interface using wavelet transform with averaged and time segmented adapted wavelets,” in 2009 2nd International Conference on Computer, Control and Communication, 2009, pp. 1–4.
  11. J. Meng, S. Zhang, A. Bekyo, J. Olsoe, B. Baxter, and B. He, “Noninvasive Electroencephalogram Based Control of a Robotic Arm for Reach and Grasp Tasks,” Scientific Reports, vol. 6, no. 1, p. 38565, Dec. 2016. [Online]. Available: https://doi.org/10.1038/srep38565
  12. R. Zhang, S. Lee, M. Hwang, A. Hiranaka, C. Wang, W. Ai, J. J. R. Tan, S. Gupta, Y. Hao, G. Levine, R. Gao, A. Norcia, L. Fei-Fei, and J. Wu, “Noir: Neural signal operated intelligent robots for everyday activities,” in 7th Annual Conference on Robot Learning, 2023.
  13. A. Dillen, D. Steckelmacher, K. Efthymiadis, K. Langlois, A. De Beir, U. Marusic, B. Vanderborght, A. Nowé, R. Meeusen, F. Ghaffari, O. Romain, and K. De Pauw, “Deep learning for biosignal control: insights from basic to real-time methods with recommendations,” J Neural Eng, vol. 19, no. 1, Feb. 2022.
  14. F. S. Racz, R. Fakhreddine, S. Kumar, and J. Del R. Millan, “Riemannian geometry-based detection of slow cortical potentials during movement preparation,” in 2023 11th International IEEE/EMBS Conference on Neural Engineering (NER), 2023, pp. 1–5.
  15. F. Yger, M. Berar, and F. Lotte, “Riemannian approaches in brain-computer interfaces: A review,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 25, no. 10, pp. 1753–1762, 2017.
  16. J. Ying, Q. Wei, and X. Zhou, “Riemannian geometry-based transfer learning for reducing training time in c-VEP BCIs,” Scientific Reports, vol. 12, no. 1, p. 9818, Jun. 2022. [Online]. Available: https://doi.org/10.1038/s41598-022-14026-y
  17. M. Congedo, A. Barachant, and R. Bhatia, “Riemannian geometry for eeg-based brain-computer interfaces; a primer and a review,” 2017. [Online]. Available: https://api.semanticscholar.org/CorpusID:13857467
  18. P. L. C. Rodrigues, C. Jutten, and M. Congedo, “Riemannian procrustes analysis: Transfer learning for brain–computer interfaces,” IEEE Transactions on Biomedical Engineering, vol. 66, pp. 2390–2401, 2019. [Online]. Available: https://api.semanticscholar.org/CorpusID:58642888
  19. A. Barachant, S. Bonnet, M. Congedo, and C. Jutten, “Multiclass brain–computer interface classification by riemannian geometry,” IEEE Transactions on Biomedical Engineering, vol. 59, pp. 920–928, 2012. [Online]. Available: https://api.semanticscholar.org/CorpusID:423006
  20. ——, “Classification of covariance matrices using a riemannian-based kernel for bci applications,” Neurocomputing, vol. 112, pp. 172–178, 2013. [Online]. Available: https://api.semanticscholar.org/CorpusID:13873072
  21. C. M. Michel and D. Brunet, “Eeg source imaging: A practical review of the analysis steps,” Frontiers in Neurology, vol. 10, 2019. [Online]. Available: https://api.semanticscholar.org/CorpusID:93003798
  22. Y. Wang, S. Gao, and X. Gao, “Common spatial pattern method for channel selelction in motor imagery based brain-computer interface,” in 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, 2005, pp. 5392–5395.
  23. D. A. Andreou and R. Poli, “Comparing eeg, its time-derivative and their joint use as features in a bci for 2-d pointer control,” 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5853–5856, 2016. [Online]. Available: https://api.semanticscholar.org/CorpusID:172677
  24. M. Menceloglu, M. Grabowecky, and S. Suzuki, “Spectral-power associations reflect amplitude modulation and within-frequency interactions on the sub-second timescale and cross-frequency interactions on the seconds timescale,” PLoS ONE, vol. 15, 2020. [Online]. Available: https://api.semanticscholar.org/CorpusID:214419358
  25. G. Chen, H. S. Helm, K. Lytvynets, W. Yang, and C. E. Priebe, “Mental state classification using multi-graph features,” Frontiers in Human Neuroscience, vol. 16, 2022. [Online]. Available: https://api.semanticscholar.org/CorpusID:247187688
  26. L. Bi, A. G. Feleke, and C. Guan, “A review on emg-based motor intention prediction of continuous human upper limb motion for human-robot collaboration,” Biomedical Signal Processing and Control, vol. 51, pp. 113–127, 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1746809419300473
  27. E. Trigili, L. Grazi, S. Crea, A. Accogli, J. Carpaneto, S. Micera, N. Vitiello, and A. Panarese, “Detection of movement onset using emg signals for upper-limb exoskeletons in reaching tasks,” Journal of neuroengineering and rehabilitation, vol. 16, pp. 1–16, 2019.
  28. A. Schurger, P. B. Hu, J. Pak, and A. L. Roskies, “What is the readiness potential?” Trends in Cognitive Sciences, vol. 25, no. 7, pp. 558–570, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1364661321000930
  29. E. Travers, N. Khalighinejad, A. Schurger, and P. Haggard, “Do readiness potentials happen all the time?” NeuroImage, vol. 206, p. 116286, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1053811919308778
  30. A. Schurger, P. Hu, J. Pak, and A. L. Roskies, “What is the readiness potential?” Trends in cognitive sciences, vol. 25, pp. 558 – 570, 2021. [Online]. Available: https://api.semanticscholar.org/CorpusID:233471654
  31. X. Tang, W. Li, X. Li, W. Ma, and X. Dang, “Motor imagery eeg recognition based on conditional optimization empirical mode decomposition and multi-scale convolutional neural network,” Expert Systems with Applications, vol. 149, p. 113285, 2020.
  32. P. Batres-Mendoza, E. I. Guerra-Hernandez, A. Espinal, E. Pérez-Careta, and H. Rostro-Gonzalez, “Biologically-inspired legged robot locomotion controlled with a bci by means of cognitive monitoring,” IEEE Access, vol. 9, pp. 35 766–35 777, 2021.
  33. S. Bhattacharyya, A. Konar, and D. Tibarewala, “Motor imagery and error related potential induced position control of a robotic arm,” IEEE/CAA Journal of Automatica Sinica, vol. 4, no. 4, pp. 639–650, 2017.
  34. J. Choi, K. T. Kim, J. H. Jeong, L. Kim, S. J. Lee, and H. Kim, “Developing a motor imagery-based real-time asynchronous hybrid bci controller for a lower-limb exoskeleton,” Sensors, vol. 20, no. 24, p. 7309, 2020.
  35. H. Gao, L. Luo, M. Pi, Z. Li, Q. Li, K. Zhao, and J. Huang, “Eeg-based volitional control of prosthetic legs for walking in different terrains,” IEEE Transactions on Automation Science and Engineering, vol. 18, no. 2, pp. 530–540, 2019.
  36. J. Andreu-Perez, F. Cao, H. Hagras, and G.-Z. Yang, “A self-adaptive online brain–machine interface of a humanoid robot through a general type-2 fuzzy inference system,” IEEE Transactions on Fuzzy Systems, vol. 26, no. 1, pp. 101–116, 2016.
  37. L. Tonin, F. C. Bauer, and J. d. R. Millán, “The role of the control framework for continuous teleoperation of a brain–machine interface-driven mobile robot,” IEEE Transactions on Robotics, vol. 36, no. 1, pp. 78–91, 2019.
  38. D. Liu, W. Chen, Z. Pei, and J. Wang, “A brain-controlled lower-limb exoskeleton for human gait training,” Review of Scientific Instruments, vol. 88, no. 10, 2017.
  39. J. R. Millan and J. Mouriño, “Asynchronous bci and local neural classifiers: an overview of the adaptive brain interface project,” IEEE transactions on neural systems and rehabilitation engineering, vol. 11, no. 2, pp. 159–161, 2003.
  40. L. Junwei, S. Ramkumar, G. Emayavaramban, M. Thilagaraj, V. Muneeswaran, M. P. Rajasekaran, V. Venkataraman, A. F. Hussein et al., “Brain computer interface for neurodegenerative person using electroencephalogram,” IEEE Access, vol. 7, pp. 2439–2452, 2018.
  41. T. Li, J. Hong, J. Zhang, and F. Guo, “Brain–machine interface control of a manipulator using small-world neural network and shared control strategy,” Journal of neuroscience methods, vol. 224, pp. 26–38, 2014.
  42. Z. Tang, S. Sun, S. Zhang, Y. Chen, C. Li, and S. Chen, “A brain-machine interface based on erd/ers for an upper-limb exoskeleton control,” Sensors, vol. 16, no. 12, p. 2050, 2016.
  43. G. Kucukyildiz, H. Ocak, S. Karakaya, and O. Sayli, “Design and implementation of a multi sensor based brain computer interface for a robotic wheelchair,” Journal of Intelligent & Robotic Systems, vol. 87, pp. 247–263, 2017.
  44. C. H. Nguyen and P. K. Artemiadis, “Eeg feature descriptors and discriminant analysis under riemannian manifold perspective,” Neurocomputing, vol. 275, pp. 1871–1883, 2018. [Online]. Available: https://api.semanticscholar.org/CorpusID:894293
  45. F. P. Kalaganis, N. A. Laskaris, E. Chatzilari, S. Nikolopoulos, and I. Kompatsiaris, “A riemannian geometry approach to reduced and discriminative covariance estimation in brain computer interfaces,” IEEE Transactions on Biomedical Engineering, vol. 67, pp. 245–255, 2020. [Online]. Available: https://api.semanticscholar.org/CorpusID:122544415
  46. S. Calinon, “Gaussians on riemannian manifolds: Applications for robot learning and adaptive control,” IEEE Robotics & Automation Magazine, vol. 27, pp. 33–45, 2019. [Online]. Available: https://api.semanticscholar.org/CorpusID:216322247
  47. EEG System for Clinical and Research Use — Bittium NeurOne. Bittium. Accessed 2023-03-06. [Online]. Available: https://www.bittium.com/medical/bittium-neuron
  48. J. A. Pineda, B. Z. Allison, and A. Vankov, “The effects of self-movement, observation, and imagination on/spl mu/rhythms and readiness potentials (rp’s): toward a brain-computer interface (bci),” IEEE Transactions on Rehabilitation Engineering, vol. 8, no. 2, pp. 219–222, 2000.
  49. Y. Wang, S. Gao, and X. Gao, “Common spatial pattern method for channel selelction in motor imagery based brain-computer interface,” 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, pp. 5392–5395, 2005. [Online]. Available: https://api.semanticscholar.org/CorpusID:20814659
  50. W. Wen, R. Minohara, S. Hamasaki, T. Maeda, Q. An, Y. Tamura, H. Yamakawa, A. Yamashita, and H. Asama, “The readiness potential reflects the reliability of action consequence,” Scientific Reports, vol. 8, 2018. [Online]. Available: https://api.semanticscholar.org/CorpusID:51940807
Citations (1)

Summary

We haven't generated a summary for this paper yet.