Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Boolean intervals in the weak Bruhat order of a finite Coxeter group (2403.07989v1)

Published 12 Mar 2024 in math.CO

Abstract: Given a Coxeter group $W$ with Coxeter system $(W,S)$, where $S$ is finite. We provide a complete characterization of Boolean intervals in the weak order of $W$ uniformly for all Coxeter groups in terms of independent sets of the Coxeter graph. Moreover, we establish that the number of Boolean intervals of rank $k$ in the weak order of $W$ is ${i_k(\Gamma_W)\cdot|W|}\,/\,2{k}$, where $\Gamma_W$ is the Coxeter graph of $W$ and $i_k(\Gamma_W)$ is the number of independent sets of size $k$ of $\Gamma_W$ when $W$ is finite. Specializing to $A_n$, we recover the characterizations and enumerations of Boolean intervals in the weak order of $A_n$ given in arXiv:2306.14734. We provide the analogous results for types $C_n$ and $D_n$, including the related generating functions and additional connections to well-known integer sequences.

Citations (1)

Summary

We haven't generated a summary for this paper yet.