Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Neural-Evolutionary Algorithm for Autonomous Transit Network Design (2403.07917v3)

Published 27 Feb 2024 in cs.NE and cs.LG

Abstract: Planning a public transit network is a challenging optimization problem, but essential in order to realize the benefits of autonomous buses. We propose a novel algorithm for planning networks of routes for autonomous buses. We first train a graph neural net model as a policy for constructing route networks, and then use the policy as one of several mutation operators in a evolutionary algorithm. We evaluate this algorithm on a standard set of benchmarks for transit network design, and find that it outperforms the learned policy alone by up to 20% and a plain evolutionary algorithm approach by up to 53% on realistic benchmark instances.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (69)
  1. T. Roughgarden and É. Tardos, “How bad is selfish routing?” Journal of the ACM (JACM), vol. 49, no. 2, pp. 236–259, 2002.
  2. S. Oh, R. Seshadri, D.-T. Le, P. C. Zegras, and M. E. Ben-Akiva, “Evaluating automated demand responsive transit using microsimulation,” IEEE Access, vol. 8, pp. 82 551–82 561, 2020.
  3. J. Rich, R. Seshadri, A. J. Jomeh, and S. R. Clausen, “Fixed routing or demand-responsive? agent-based modelling of autonomous first and last mile services in light-rail systems,” Transportation Research Part A: Policy and Practice, vol. 173, p. 103676, 2023.
  4. A. France-Presse, “Driverless electric bus hits the road in Spanish city of Málaga,” https://www.theguardian.com/world/2021/feb/25/driverless-electric-bus-hits-the-road-in-spanish-city-of-malaga, 2 2021, accessed: 2021-03-09.
  5. J. Plautz, “Autonomous shuttles launch in Detroit,” https://www.smartcitiesdive.com/news/autonomous-shuttles-launch-in-detroit/526999/, 7 2018, accessed: 2019-11-27.
  6. R. Beene, “A Florida monorail makes way for the robot bus of tomorrow,” Bloomberg, 2 2018.
  7. S. Chakrabarti, “How can public transit get people out of their cars? An analysis of transit mode choice for commute trips in los angeles,” Transport Policy, vol. 54, no. October 2016, pp. 80–89, 2017. [Online]. Available: http://dx.doi.org/10.1016/j.tranpol.2016.11.005
  8. A. El-Geneidy, M. Grimsrud, R. Wasfi, P. Tétreault, and J. Surprenant-Legault, “New evidence on walking distances to transit stops: Identifying redundancies and gaps using variable service areas,” Transportation, vol. 41, no. 1, pp. 193–210, 2014.
  9. Société de transport de Montréal, “Everything about the stm,” 2013, accessed: 2023-05-17. [Online]. Available: https://web.archive.org/web/20130610123159/http://www.stm.info/english/en-bref/a-toutsurlaSTM.htm
  10. J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and locally connected networks on graphs,” arXiv preprint arXiv:1312.6203, 2013.
  11. T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.
  12. M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks on graphs with fast localized spectral filtering,” CoRR, vol. abs/1606.09375, 2016. [Online]. Available: http://arxiv.org/abs/1606.09375
  13. D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel, A. Aspuru-Guzik, and R. P. Adams, “Convolutional networks on graphs for learning molecular fingerprints,” Advances in neural information processing systems, vol. 28, 2015.
  14. R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec, “Graph convolutional neural networks for web-scale recommender systems,” CoRR, vol. abs/1806.01973, 2018. [Online]. Available: http://arxiv.org/abs/1806.01973
  15. A. Mirhoseini, A. Goldie, M. Yazgan, J. W. Jiang, E. Songhori, S. Wang, Y.-J. Lee, E. Johnson, O. Pathak, A. Nazi, et al., “A graph placement methodology for fast chip design,” Nature, vol. 594, no. 7862, pp. 207–212, 2021.
  16. J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neural message passing for quantum chemistry,” in Proceedings of the 34th International Conference on Machine Learning, ser. Proceedings of Machine Learning Research, D. Precup and Y. W. Teh, Eds., vol. 70.   PMLR, 06–11 Aug 2017, pp. 1263–1272. [Online]. Available: https://proceedings.mlr.press/v70/gilmer17a.html
  17. P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zambaldi, M. Malinowski, A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, et al., “Relational inductive biases, deep learning, and graph networks,” arXiv preprint arXiv:1806.01261, 2018.
  18. Y. Bengio, A. Lodi, and A. Prouvost, “Machine learning for combinatorial optimization: a methodological tour d’horizon,” European Journal of Operational Research, vol. 290, no. 2, pp. 405–421, 2021.
  19. O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” arXiv preprint arXiv:1506.03134, 2015.
  20. H. Dai, E. B. Khalil, Y. Zhang, B. Dilkina, and L. Song, “Learning combinatorial optimization algorithms over graphs,” arXiv preprint arXiv:1704.01665, 2017.
  21. W. Kool, H. V. Hoof, and M. Welling, “Attention, learn to solve routing problems!” in ICLR, 2019.
  22. H. Lu, X. Zhang, and S. Yang, “A learning-based iterative method for solving vehicle routing problems,” in International Conference on Learning Representations, 2019.
  23. Q. Sykora, M. Ren, and R. Urtasun, “Multi-agent routing value iteration network,” in International Conference on Machine Learning.   PMLR, 2020, pp. 9300–9310.
  24. J. Choo, Y.-D. Kwon, J. Kim, J. Jae, A. Hottung, K. Tierney, and Y. Gwon, “Simulation-guided beam search for neural combinatorial optimization,” Advances in Neural Information Processing Systems, vol. 35, pp. 8760–8772, 2022.
  25. T. N. Mundhenk, M. Landajuela, R. Glatt, C. P. Santiago, D. M. Faissol, and B. K. Petersen, “Symbolic regression via neural-guided genetic programming population seeding,” arXiv preprint arXiv:2111.00053, 2021.
  26. Z.-H. Fu, K.-B. Qiu, and H. Zha, “Generalize a small pre-trained model to arbitrarily large tsp instances,” in Proceedings of the AAAI conference on artificial intelligence, vol. 35, no. 8, 2021, pp. 7474–7482.
  27. D. Applegate, R. E. Bixby, V. Chvátal, and W. J. Cook, “Concorde tsp solver,” 2001. [Online]. Available: https://www.math.uwaterloo.ca/tsp/concorde/index.html
  28. A. Hottung and K. Tierney, “Neural large neighborhood search for the capacitated vehicle routing problem,” arXiv preprint arXiv:1911.09539, 2019.
  29. X. Chen and Y. Tian, “Learning to perform local rewriting for combinatorial optimization,” Advances in Neural Information Processing Systems, vol. 32, 2019.
  30. P. R. d O Costa, J. Rhuggenaath, Y. Zhang, and A. Akcay, “Learning 2-opt heuristics for the traveling salesman problem via deep reinforcement learning,” in Asian conference on machine learning.   PMLR, 2020, pp. 465–480.
  31. Y. Wu, W. Song, Z. Cao, J. Zhang, and A. Lim, “Learning improvement heuristics for solving routing problems,” IEEE transactions on neural networks and learning systems, vol. 33, no. 9, pp. 5057–5069, 2021.
  32. Y. Ma, J. Li, Z. Cao, W. Song, L. Zhang, Z. Chen, and J. Tang, “Learning to iteratively solve routing problems with dual-aspect collaborative transformer,” Advances in Neural Information Processing Systems, vol. 34, pp. 11 096–11 107, 2021.
  33. M. Kim, J. Park, et al., “Learning collaborative policies to solve np-hard routing problems,” Advances in Neural Information Processing Systems, vol. 34, pp. 10 418–10 430, 2021.
  34. C. Quak, “Bus line planning,” A passenger-oriented approach of the construction of a global line network and an efficient timetable. Master’s thesis, Delft University, Delft, Netherlands, 2003.
  35. R. van Nes, “Multiuser-class urban transit network design,” Transportation Research Record, vol. 1835, no. 1, pp. 25–33, 2003. [Online]. Available: https://doi.org/10.3141/1835-04
  36. J. Guan, H. Yang, and S. Wirasinghe, “Simultaneous optimization of transit line configuration and passenger line assignment,” Transportation Research Part B: Methodological, vol. 40, pp. 885–902, 12 2006.
  37. V. Guihaire and J.-K. Hao, “Transit network design and scheduling: A global review,” Transportation Research Part A: Policy and Practice, vol. 42, no. 10, pp. 1251–1273, 2008.
  38. K. Kepaptsoglou and M. Karlaftis, “Transit route network design problem: Review,” Journal of Transportation Engineering, vol. 135, no. 8, pp. 491–505, 2009.
  39. K. Sörensen, M. Sevaux, and F. Glover, “A history of metaheuristics,” in Handbook of heuristics.   Springer, 2018, pp. 791–808.
  40. M. Nikolić and D. Teodorović, “Transit network design by bee colony optimization,” Expert Systems with Applications, vol. 40, no. 15, pp. 5945–5955, 2013.
  41. Y. Xiong and J. B. Schneider, “Transportation network design using a cumulative genetic algorithm and neural network,” Transportation Research Record, vol. 1364, 1992.
  42. J.-P. Rodrigue, “Parallel modelling and neural networks: An overview for transportation/land use systems,” Transportation Research Part C: Emerging Technologies, vol. 5, no. 5, pp. 259–271, 1997. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0968090X97000144
  43. S. I.-J. Chien, Y. Ding, and C. Wei, “Dynamic bus arrival time prediction with artificial neural networks,” Journal of transportation engineering, vol. 128, no. 5, pp. 429–438, 2002.
  44. R. Jeong and R. Rilett, “Bus arrival time prediction using artificial neural network model,” in Proceedings. The 7th international IEEE conference on intelligent transportation systems (IEEE Cat. No. 04TH8749).   IEEE, 2004, pp. 988–993.
  45. M. Y. Çodur and A. Tortum, “An artificial intelligent approach to traffic accident estimation: Model development and application,” Transport, vol. 24, no. 2, pp. 135–142, 2009.
  46. C. Li, L. Bai, W. Liu, L. Yao, and S. T. Waller, “Graph neural network for robust public transit demand prediction,” IEEE Transactions on Intelligent Transportation Systems, 2020.
  47. L. Zou, J.-m. Xu, and L.-x. Zhu, “Light rail intelligent dispatching system based on reinforcement learning,” in 2006 International Conference on Machine Learning and Cybernetics, 2006, pp. 2493–2496.
  48. G. Ai, X. Zuo, G. Chen, and B. Wu, “Deep reinforcement learning based dynamic optimization of bus timetable,” Applied Soft Computing, vol. 131, p. 109752, 2022.
  49. H. Yan, Z. Cui, X. Chen, and X. Ma, “Distributed multiagent deep reinforcement learning for multiline dynamic bus timetable optimization,” IEEE Transactions on Industrial Informatics, vol. 19, pp. 469–479, 2023.
  50. Z. Jiang, W. Fan, W. Liu, B. Zhu, and J. Gu, “Reinforcement learning approach for coordinated passenger inflow control of urban rail transit in peak hours,” Transportation Research Part C: Emerging Technologies, vol. 88, pp. 1–16, 2018. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0968090X18300111
  51. A. Darwish, M. Khalil, and K. Badawi, “Optimising public bus transit networks using deep reinforcement learning,” in 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC).   IEEE, 2020, pp. 1–7.
  52. S. Yoo, J. B. Lee, and H. Han, “A reinforcement learning approach for bus network design and frequency setting optimisation,” Public Transport, pp. 1–32, 2023.
  53. C. E. Mandl, “Evaluation and optimization of urban public transportation networks,” European Journal of Operational Research, vol. 5, no. 6, pp. 396–404, 1980.
  54. A. Holliday and G. Dudek, “Augmenting transit network design algorithms with deep learning,” in 2023 26th IEEE International Conference on Intelligent Transportation Systems (ITSC).   IEEE, 2023.
  55. C. L. Mumford, “New heuristic and evolutionary operators for the multi-objective urban transit routing problem,” in 2013 IEEE congress on evolutionary computation.   IEEE, 2013, pp. 939–946.
  56. S. Brody, U. Alon, and E. Yahav, “How attentive are graph attention networks?” 2021. [Online]. Available: https://arxiv.org/abs/2105.14491
  57. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in neural information processing systems, 2017, pp. 5998–6008.
  58. R. J. Williams, “Simple statistical gradient-following algorithms for connectionist reinforcement learning,” Machine learning, vol. 8, no. 3, pp. 229–256, 1992.
  59. S. Fortune, “Voronoi diagrams and delaunay triangulations,” Computing in Euclidean geometry, pp. 225–265, 1995.
  60. K. Sörensen, “Metaheuristics—the metaphor exposed,” International Transactions in Operational Research, vol. 22, no. 1, pp. 3–18, 2015.
  61. C. L. Mumford, “Supplementary material for: New heuristic and evolutionary operators for the multi-objective urban transit routing problem, cec 2013,” https://users.cs.cf.ac.uk/C.L.Mumford/Research%20Topics/UTRP/CEC2013Supp.zip, 2013, accessed: 2023-03-24.
  62. M. P. John, C. L. Mumford, and R. Lewis, “An improved multi-objective algorithm for the urban transit routing problem,” in Evolutionary Computation in Combinatorial Optimisation, C. Blum and G. Ochoa, Eds.   Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 49–60.
  63. F. Kılıç and M. Gök, “A demand based route generation algorithm for public transit network design,” Computers & Operations Research, vol. 51, pp. 21–29, 2014. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0305054814001300
  64. H. Lin and C. Tang, “Analysis and optimization of urban public transport lines based on multiobjective adaptive particle swarm optimization,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 9, pp. 16 786–16 798, 2022.
  65. M. J. Alonso-González, T. Liu, O. Cats, N. Van Oort, and S. Hoogendoorn, “The potential of demand-responsive transport as a complement to public transport: An assessment framework and an empirical evaluation,” Transportation Research Record, vol. 2672, no. 8, pp. 879–889, 2018.
  66. G. Leich and J. Bischoff, “Should autonomous shared taxis replace buses? a simulation study,” Transportation Research Procedia, vol. 41, pp. 450–460, 2019.
  67. A. Vakayil, W. Gruel, and S. Samaranayake, “Integrating shared-vehicle mobility-on-demand systems with public transit,” Tech. Rep., 2017.
  68. C. Ruch, S. Hörl, and E. Frazzoli, “Amodeus, a simulation-based testbed for autonomous mobility-on-demand systems,” in 2018 21st International Conference on Intelligent Transportation Systems (ITSC).   IEEE, 2018, pp. 3639–3644.
  69. P. Martí, J. Jordán, F. De la Prieta, H. Billhardt, and V. Julian, “Demand-responsive shared transportation: a self-interested proposal,” Electronics, vol. 11, no. 1, p. 78, 2021.

Summary

We haven't generated a summary for this paper yet.