Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Syncopated Dynamical Decoupling for Suppressing Crosstalk in Quantum Circuits (2403.07836v1)

Published 12 Mar 2024 in quant-ph

Abstract: Theoretically understanding and experimentally characterizing and modifying the underlying Hamiltonian of a quantum system is of utmost importance in achieving high-fidelity quantum gates for quantum computing. In this work, we explore the use of dynamical decoupling (DD) in characterizing undesired two-qubit couplings as well as the underlying single-qubit decoherence, and in suppressing them. We develop a syncopated dynamical decoupling technique which protects against decoherence and selectively targets unwanted two-qubit interactions, overcoming both significant hurdles to achieving precise quantum control and realizing quantum computing on many hardware prototypes. On a transmon-qubit-based superconducting quantum device, we identify separate white and $1/f$ noise components underlying the single-qubit decoherence and a static ZZ coupling between pairs of qubits. We suppress these errors using syncopated dynamical decoupling in two-qubit benchmarking experiments and significantly boost performance in a realistic algorithmic quantum circuit.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. D. Gottesman, An Introduction to Quantum Error Correction and Fault-Tolerant Quantum Computation, arXiv e-prints , arXiv:0904.2557 (2009), arXiv:0904.2557 [quant-ph] .
  2. L. Viola and S. Lloyd, Dynamical suppression of decoherence in two-state quantum systems, Phys. Rev. A 58, 2733 (1998).
  3. L. Viola, E. Knill, and S. Lloyd, Dynamical decoupling of open quantum systems, Phys. Rev. Lett. 82, 2417 (1999a).
  4. L. Viola, S. Lloyd, and E. Knill, Universal control of decoupled quantum systems, Phys. Rev. Lett. 83, 4888 (1999b).
  5. P. Zanardi, Symmetrizing evolutions, Physics Letters A 258, 77 (1999).
  6. D. Vitali and P. Tombesi, Using parity kicks for decoherence control, Phys. Rev. A 59, 4178 (1999).
  7. L.-A. Wu, M. S. Byrd, and D. Lidar, Efficient universal leakage elimination for physical and encoded qubits, Physical review letters 89, 127901 (2002).
  8. K. Khodjasteh and D. A. Lidar, Fault-tolerant quantum dynamical decoupling, Phys. Rev. Lett. 95, 180501 (2005).
  9. G. A. Álvarez and D. Suter, Measuring the spectrum of colored noise by dynamical decoupling, Phys. Rev. Lett. 107, 230501 (2011).
  10. J. Garbow, D. Weitekamp, and A. Pines, Bilinear rotation decoupling of homonuclear scalar interactions, Chemical Physics Letters 93, 504 (1982).
  11. E. L. Hahn, Spin echoes, Phys. Rev. 80, 580 (1950).
  12. H. Y. Carr and E. M. Purcell, Effects of diffusion on free precession in nuclear magnetic resonance experiments, Phys. Rev. 94, 630 (1954).
  13. S. Meiboom and D. Gill, Modified Spin-Echo Method for Measuring Nuclear Relaxation Times, Review of Scientific Instruments 29, 688 (1958).
  14. J. S. Waugh, L. M. Huber, and U. Haeberlen, Approach to high-resolution nmr in solids, Phys. Rev. Lett. 20, 180 (1968b).
  15. J. Waugh, Theory of broadband spin decoupling, Journal of Magnetic Resonance (1969) 50, 30 (1982).
  16. L. M. K. Vandersypen and I. L. Chuang, Nmr techniques for quantum control and computation, Rev. Mod. Phys. 76, 1037 (2005).
  17. A. Maudsley, Modified carr-purcell-meiboom-gill sequence for nmr fourier imaging applications, Journal of Magnetic Resonance (1969) 69, 488 (1986).
  18. One should notice that the basis is not normalized. It can be normalized by assigning a prefactor of 1/D1𝐷1/\sqrt{D}1 / square-root start_ARG italic_D end_ARG where D𝐷Ditalic_D is the Hilbert space dimension.
  19. S. Niu and A. Todri-Sanial, Analyzing strategies for dynamical decoupling insertion on ibm quantum computer, arXiv 2022, 10.48550/arXiv.2204.14251 (2022).
  20. Qiskit contributors, Qiskit: An open-source framework for quantum computing (2023).
  21. J. J. Wallman and J. Emerson, Noise tailoring for scalable quantum computation via randomized compiling, Phys. Rev. A 94, 052325 (2016), publisher: American Physical Society.
  22. One could also generalize the theory for non-constant crosstalks and non-unitary channels with superoperator representation.
  23. S. Skiena, Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica (Addison-Wesley Longman Publishing Co., Inc., USA, 1991).
Citations (7)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com