Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tightly Bounded Polynomials via Flexible Discretizations for Dynamic Optimization Problems (2403.07707v2)

Published 12 Mar 2024 in math.OC, cs.SY, and eess.SY

Abstract: Polynomials are widely used to represent the trajectories of states and/or inputs. It has been shown that a polynomial can be bounded by its coefficients, when expressed in the Bernstein basis. However, in general, the bounds provided by the Bernstein coefficients are not tight. We propose a method for obtaining numerical solutions to dynamic optimization problems, where a flexible discretization is used to achieve tight polynomial bounds. The proposed method is used to solve a constrained cart-pole swing-up optimal control problem. The flexible discretization eliminates the conservatism of the Bernstein bounds and enables a lower cost, in comparison with non-flexible discretizations. A theoretical result on obtaining tight polynomial bounds with a finite discretization is presented. In some applications with linear dynamics, the non-convexity introduced by the flexible discretization may be a drawback.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (10)
  1. American Mathematical Society, Dec. 1939.
  2. G. Cargo and O. Shisha, “The Bernstein form of a polynomial,” Journal of Research of the National Bureau of Standards Section B Mathematics and Mathematical Physics, vol. 70B, pp. 79–81, Jan. 1966.
  3. N. Koeppen, I. M. Ross, L. C. Wilcox, and R. J. Proulx, “Fast Mesh Refinement in Pseudospectral Optimal Control,” Journal of Guidance, Control, and Dynamics, vol. 42, no. 4, pp. 711–722, 2019.
  4. V. Cichella, I. Kaminer, C. Walton, N. Hovakimyan, and A. M. Pascoal, “Optimal Multivehicle Motion Planning Using Bernstein Approximants,” IEEE Transactions on Automatic Control, vol. 66, pp. 1453–1467, Apr. 2021.
  5. J. P. Allamaa, P. Patrinos, H. Van Der Auweraer, and T. D. Son, “Safety Envelope for Orthogonal Collocation Methods in Embedded Optimal Control,” in 2023 European Control Conference (ECC), pp. 1–7, June 2023.
  6. J. P. Allamaa, P. Patrinos, T. Ohtsuka, and T. D. Son, “Real-time MPC with Control Barrier Functions for Autonomous Driving using Safety Enhanced Collocation,” Jan. 2024. arXiv:2401.06648 [cs, eess, math].
  7. I. M. Ross and F. Fahroo, “Pseudospectral Knotting Methods for Solving Nonsmooth Optimal Control Problems,” Journal of Guidance, Control, and Dynamics, vol. 27, no. 3, pp. 397–405, 2004.
  8. L. Nita, E. M. G. Vila, M. A. Zagorowska, E. C. Kerrigan, Y. Nie, I. McInerney, and P. Falugi, “Fast and accurate method for computing non-smooth solutions to constrained control problems,” in 2022 European Control Conference (ECC), pp. 1049–1054, July 2022.
  9. R. A. De Vore, “Monotone Approximation by Polynomials,” SIAM Journal on Mathematical Analysis, vol. 8, pp. 906–921, Oct. 1977.
  10. M. Kelly, “An Introduction to Trajectory Optimization: How to Do Your Own Direct Collocation,” SIAM Review, vol. 59, pp. 849–904, Jan. 2017.
Citations (1)

Summary

We haven't generated a summary for this paper yet.