Trade-offs and thermodynamics of energy-relay proofreading (2403.07626v1)
Abstract: Biological processes that are able to discriminate between different molecules consume energy and dissipate heat. They operate at different levels of fidelity and speed, and as a consequence there exist fundamental trade-offs between these quantities and the entropy production rate. Usually, the energy source required to operate in a high-fidelity regime comes from the consumption of external energetic molecules, e.g., GTP hydrolysis in protein translation . In this work, we study trade-offs between several kinetic and thermodynamic observables for Hopfield's energy-relay mechanism, which does not consume external molecules and is able to operate in depleted regions, at the cost of a higher error rate. The trade-offs are obtained both analytically and numerically via Pareto optimal fronts. We find that the scheme is able to operate in three distinct regimes: an energy relay regime, a mixed relay-Michaelis-Menten regime, and a Michaelis-Menten regime, depending on the kinetic and energetic parameters that tune transitions between states. The mixed regime features a dynamical phase transition in the error-entropy production Pareto trade-off, while the pure energy relay regime contains a region where this type of proofreading energetically outperforms standard kinetic proofreading.
- J. J. Hopfield, PNAS 71, 4135 (1974).
- J. Ninio, Biochimie 57, 587 (1975).
- H. Qian, Biophys. J. 95, 10 (2008).
- J. Ninio, FEBS Lett. 196, 1 (1986).
- A. Cornish-Bowden and M. L. Cárdenas, J. Theor. Biol. 124, 1 (1987).
- J. Ninio, Biochimie 88, 963 (2006).
- J. J. Hopfield, PNAS 77, 5248 (1980).
- W. Radding and G. N. Phillips Jr., BioEssays 26, 422 (2004).
- J. E. Wilusz, WIREs RNA 6, 453 (2015).
- M. Ehrenberg and C. Blomberg, Biophys. J. 31, 333 (1980).
- A. Murugan, D. A. Huse, and S. Leibler, Phys. Rev. X 4, 021016 (2014).
- P. Sartori and S. Pigolotti, Phys. Rev. X 5, 041039 (2015).
- H. Boeger, Annu. Rev. Biochem. 91, 423 (2022).
- C. H. Bennett, Biosystems 11, 85 (1979).
- A. Murugan, D. A. Huse, and S. Leibler, PNAS 109, 12034 (2012).
- R. Rao and L. Peliti, J. Stat. Mech.: Theory Exp. 2015 (6), P06001.
- K. Banerjee, A. B. Kolomeisky, and O. A. Igoshin, PNAS 114, 5183 (2017).
- K. Banerjee, B. Das, and G. Gangopadhyay, J. Chem. Phys. 152, 111102 (2020).
- J. D. Mallory, A. B. Kolomeisky, and O. A. Igoshin, J. Phys. Chem. B 123, 4718 (2019).
- A. C. Barato and U. Seifert, Phys. Rev. Lett. 114, 158101 (2015).
- W. D. Piñeros and T. Tlusty, Phys. Rev. E 101, 022415 (2020).
- J. Berx and K. Proesmans, EPL 10.1209/0295-5075/ad2d14 (2024).
- M. A. Savageau, J. Theor. Biol. 93, 179 (1981).
- H. Qian, J. Phys. Chem. B 114, 16105 (2010).
- Q. Yu, A. B. Kolomeisky, and O. A. Igoshin, J. R. Soc. Interface 19, 20210883 (2022).
- D. Chiuchiu, S. Mondal, and S. Pigolotti, New J. Phys. 25, 043007 (2023).
- P. Sartori and S. Pigolotti, Phys. Rev. Lett. 110, 188101 (2013).
- Y.-M. Hou, IUBMB Life 62, 251 (2010).
- K. B. Gromadski and M. V. Rodnina, Mol. Cell 13, 191 (2004).
- M. V. Rodnina and W. Wintermeyer, TIBS 26, 124 (2001).
- A. Murugan and S. Vaikuntanathan, J. Stat. Phys. 162, 1183 (2016).
- A. P. Solon and J. M. Horowitz, Phys. Rev. Lett. 120, 180605 (2018).