Enhanced Monochromatic Photon Emission from Millicharged Co-Interacting Dark Matter (2403.07528v1)
Abstract: We study a millicharged co-interacting dark matter scenario, where the primary dark matter constituent is the dark photon $A'$ and the secondary component is the fermion $\chi$. In this model, $\chi$ interacts with $A'$ via a $U(1)'$ interaction while being millicharged with respect to normal photons. Our investigation focuses on the oscillation of $A'$ dark matter into photons within the background of $\chi$ particles, revealing that the $A'-\chi$ scattering rate benefits from a Bose enhancement of the $A'$ final state. As the oscillation production rate is directly linked to the scattering rate, the conversion of $A'$ dark matter into monochromatic photons experiences significant amplification owing to this Bose enhancement, especially when the scattering rate $\Gamma_{\rm sca}$ approaches the dark photon mass $m_{A'}$. These converted monochromatic photons are detectable through radio telescopes and can induce distortions in the Cosmic Microwave Background (CMB) spectrum. We find that the sensitivity of radio telescopes and the constraints imposed by CMB distortion on the kinetic mixing parameter are notably heightened compared to scenarios without the subdominant millicharged dark matter.
- R. D. Peccei and H. R. Quinn, “Constraints Imposed by CP Conservation in the Presence of Instantons,” Phys. Rev. D 16 (1977) 1791–1797.
- R. D. Peccei and H. R. Quinn, “CP Conservation in the Presence of Instantons,” Phys. Rev. Lett. 38 (1977) 1440–1443.
- S. Weinberg, “A New Light Boson?” Phys. Rev. Lett. 40 (1978) 223–226.
- F. Wilczek, “Problem of Strong P𝑃Pitalic_P and T𝑇Titalic_T Invariance in the Presence of Instantons,” Phys. Rev. Lett. 40 (1978) 279–282.
- M. A. Srednicki, ed., “Cosmology of the Invisible Axion,” Phys. Lett. B 120 (1983) 127–132.
- M. A. Srednicki, ed., “A Cosmological Bound on the Invisible Axion,” Phys. Lett. B 120 (1983) 133–136.
- M. A. Srednicki, ed., “The Not So Harmless Axion,” Phys. Lett. B 120 (1983) 137–141.
- J. E. Kim and G. Carosi, “Axions and the Strong CP Problem,” Rev. Mod. Phys. 82 (2010) 557–602 [arXiv:0807.3125]. [Erratum: Rev.Mod.Phys. 91, 049902 (2019)].
- O. Wantz and E. P. S. Shellard, “Axion Cosmology Revisited,” Phys. Rev. D 82 (2010) 123508 [arXiv:0910.1066].
- A. Ringwald, “Exploring the Role of Axions and Other WISPs in the Dark Universe,” Phys. Dark Univ. 1 (2012) 116–135 [arXiv:1210.5081].
- M. Kawasaki and K. Nakayama, “Axions: Theory and Cosmological Role,” Ann. Rev. Nucl. Part. Sci. 63 (2013) 69–95 [arXiv:1301.1123].
- P. Svrcek and E. Witten, “Axions In String Theory,” JHEP 06 (2006) 051 [hep-th/0605206].
- R. Essig et al. in Snowmass 2013: Snowmass on the Mississippi. 2013. arXiv:1311.0029.
- D. J. E. Marsh, “Axion Cosmology,” Phys. Rept. 643 (2016) 1–79 [arXiv:1510.07633].
- P. W. Graham, I. G. Irastorza, S. K. Lamoreaux, A. Lindner, and K. A. van Bibber, “Experimental Searches for the Axion and Axion-Like Particles,” Ann. Rev. Nucl. Part. Sci. 65 (2015) 485–514 [arXiv:1602.00039].
- A. E. Nelson and J. Scholtz, “Dark Light, Dark Matter and the Misalignment Mechanism,” Phys. Rev. D 84 (2011) 103501 [arXiv:1105.2812].
- P. W. Graham, J. Mardon, and S. Rajendran, “Vector Dark Matter from Inflationary Fluctuations,” Phys. Rev. D 93 (2016) 103520 [arXiv:1504.02102].
- R. A. Flores and J. R. Primack, “Observational and theoretical constraints on singular dark matter halos,” Astrophys. J. Lett. 427 (1994) L1–4 [astro-ph/9402004].
- J. F. Navarro, C. S. Frenk, and S. D. M. White, “A Universal density profile from hierarchical clustering,” Astrophys. J. 490 (1997) 493–508 [astro-ph/9611107].
- A. B. Newman, T. Treu, R. S. Ellis, and D. J. Sand, “The Density Profiles of Massive, Relaxed Galaxy Clusters: II. Separating Luminous and Dark Matter in Cluster Cores,” Astrophys. J. 765 (2013) 25 [arXiv:1209.1392].
- A. A. Klypin, A. V. Kravtsov, O. Valenzuela, and F. Prada, “Where are the missing Galactic satellites?” Astrophys. J. 522 (1999) 82–92 [astro-ph/9901240].
- M. Boylan-Kolchin, J. S. Bullock, and M. Kaplinghat, “Too big to fail? The puzzling darkness of massive Milky Way subhaloes,” Mon. Not. Roy. Astron. Soc. 415 (2011) L40 [arXiv:1103.0007].
- M. Boylan-Kolchin, J. S. Bullock, and M. Kaplinghat, “The Milky Way’s bright satellites as an apparent failure of LCDM,” Mon. Not. Roy. Astron. Soc. 422 (2012) 1203–1218 [arXiv:1111.2048].
- D. J. Sand, T. Treu, G. P. Smith, and R. S. Ellis, “The dark matter distribution in the central regions of galaxy clusters: Implications for CDM,” Astrophys. J. 604 (2004) 88–107 [astro-ph/0309465].
- E. J. Tollerud, M. Boylan-Kolchin, and J. S. Bullock, “M31 Satellite Masses Compared to LCDM Subhaloes,” Mon. Not. Roy. Astron. Soc. 440 (2014) 3511–3519 [arXiv:1403.6469].
- J. Liu, X.-P. Wang, and W. Xue, “Co-Interacting Dark Matter,” Phys. Rev. D 100 (2019) 123012 [arXiv:1902.02348].
- V. Iršič, M. Viel, M. G. Haehnelt, J. S. Bolton, and G. D. Becker, “First constraints on fuzzy dark matter from Lyman-α𝛼\alphaitalic_α forest data and hydrodynamical simulations,” Phys. Rev. Lett. 119 (2017) 031302 [arXiv:1703.04683].
- E. Armengaud, N. Palanque-Delabrouille, C. Yèche, D. J. E. Marsh, and J. Baur, “Constraining the mass of light bosonic dark matter using SDSS Lyman-α𝛼\alphaitalic_α forest,” Mon. Not. Roy. Astron. Soc. 471 (2017) 4606–4614 [arXiv:1703.09126].
- T. Kobayashi, R. Murgia, A. De Simone, V. Iršič, and M. Viel, “Lyman-α𝛼\alphaitalic_α constraints on ultralight scalar dark matter: Implications for the early and late universe,” Phys. Rev. D 96 (2017) 123514 [arXiv:1708.00015].
- R. Murgia, V. Iršič, and M. Viel, “Novel constraints on noncold, nonthermal dark matter from Lyman- α𝛼\alphaitalic_α forest data,” Phys. Rev. D 98 (2018) 083540 [arXiv:1806.08371].
- M. Nori, R. Murgia, V. Iršič, M. Baldi, and M. Viel, “Lyman α𝛼\alphaitalic_α forest and non-linear structure characterization in Fuzzy Dark Matter cosmologies,” Mon. Not. Roy. Astron. Soc. 482 (2019) 3227–3243 [arXiv:1809.09619].
- M. Du, J. Liu, X.-P. Wang, and T. Wu, “Amplifying Non-Resonant Production of Dark Sector Particles in Scattering Dominance Regime.” arXiv:2309.00231.
- D. Feldman, Z. Liu, and P. Nath, “The Stueckelberg Z-prime Extension with Kinetic Mixing and Milli-Charged Dark Matter From the Hidden Sector,” Phys. Rev. D 75 (2007) 115001 [hep-ph/0702123].
- M. Du, R. Fang, Z. Liu, W. Lu, and Z. Ye, “Probing invisible dark photon models via atmospheric collisions.” arXiv:2308.05607.
- W.-Z. Feng, Z.-H. Zhang, and K.-Y. Zhang, “Sub-GeV millicharge dark matter from the U(1)X𝑈subscript1𝑋U(1)_{X}italic_U ( 1 ) start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT hidden sector.” arXiv:2312.03837.
- Planck Collaboration, “Planck 2018 results. VI. Cosmological parameters,” Astron. Astrophys. 641 (2020) A6 [arXiv:1807.06209]. [Erratum: Astron.Astrophys. 652, C4 (2021)].
- R. J. Nijboer, M. Pandey-Pommier, and A. G. de Bruyn, “LOFAR imaging capabilities and system sensitivity.” arXiv:1308.4267.
- J. H. Chang, D. Egana-Ugrinovic, R. Essig, and C. Kouvaris, “Structure formation and exotic compact objects in a dissipative dark sector,” Journal of Cosmology and Astroparticle Physics 2019 (2019) 036.
- T. Venumadhav, F.-Y. Cyr-Racine, K. N. Abazajian, and C. M. Hirata, “Sterile neutrino dark matter: Weak interactions in the strong coupling epoch,” Phys. Rev. D 94 (2016) 043515 [arXiv:1507.06655].
- D. Egana-Ugrinovic, R. Essig, D. Gift, and M. LoVerde, “The Cosmological Evolution of Self-interacting Dark Matter,” JCAP 05 (2021) 013 [arXiv:2102.06215].
- S. K. Ocker, J. M. Cordes, and S. Chatterjee, “Electron Density Structure of the Local Galactic Disk,” Astrophys. J. 897 (2020) 124 [arXiv:2004.11921].
- J. Redondo, “Atlas of solar hidden photon emission,” JCAP 07 (2015) 024 [arXiv:1501.07292].
- J. Redondo, “Helioscope Bounds on Hidden Sector Photons,” JCAP 07 (2008) 008 [arXiv:0801.1527].
- H. An, M. Pospelov, and J. Pradler, “New stellar constraints on dark photons,” Phys. Lett. B 725 (2013) 190–195 [arXiv:1302.3884].
- J. Redondo and G. Raffelt, “Solar constraints on hidden photons re-visited,” JCAP 08 (2013) 034 [arXiv:1305.2920].
- G. Sigl and G. Raffelt, “General kinetic description of relativistic mixed neutrinos,” Nucl. Phys. B 406 (1993) 423–451.
- C. A. Argüelles, V. Brdar, and J. Kopp, “Production of keV Sterile Neutrinos in Supernovae: New Constraints and Gamma Ray Observables,” Phys. Rev. D 99 (2019) 043012 [arXiv:1605.00654].
- J. Redondo, “Atlas of solar hidden photon emission,” Journal of Cosmology and Astroparticle Physics 2015 (2015) 024.
- J. F. Navarro, C. S. Frenk, and S. D. M. White, “The Structure of cold dark matter halos,” Astrophys. J. 462 (1996) 563–575 [astro-ph/9508025].
- H. An, F. P. Huang, J. Liu, and W. Xue, “Radio-frequency Dark Photon Dark Matter across the Sun,” Phys. Rev. Lett. 126 (2021) 181102 [arXiv:2010.15836].
- R. Braun, A. Bonaldi, T. Bourke, E. Keane, and J. Wagg, “Anticipated Performance of the Square Kilometre Array – Phase 1 (SKA1).” arXiv:1912.12699.
- C. Hagmann, P. Sikivie, N. S. Sullivan, and D. B. Tanner, “Results from a search for cosmic axions,” Phys. Rev. D 42 (1990) 1297–1300.
- ADMX Collaboration, “Large scale microwave cavity search for dark matter axions,” Phys. Rev. D 64 (2001) 092003.
- ADMX Collaboration, “A SQUID-based microwave cavity search for dark-matter axions,” Phys. Rev. Lett. 104 (2010) 041301 [arXiv:0910.5914].
- L. H. Nguyen, A. Lobanov, and D. Horns, “First results from the WISPDMX radio frequency cavity searches for hidden photon dark matter,” JCAP 10 (2019) 014 [arXiv:1907.12449].
- S. D. McDermott and S. J. Witte, “Cosmological evolution of light dark photon dark matter,” Phys. Rev. D 101 (2020) 063030 [arXiv:1911.05086].
- S. Davidson, S. Hannestad, and G. Raffelt, “Updated bounds on millicharged particles,” JHEP 05 (2000) 003 [hep-ph/0001179].
- H. Vogel and J. Redondo, “Dark Radiation constraints on minicharged particles in models with a hidden photon,” JCAP 02 (2014) 029 [arXiv:1311.2600].
- Y. B. Zeldovich and R. Sunyaev, “The interaction of matter and radiation in a hot-model universe,” Astrophysics and Space Science 4 (1969) 301–316.
- R. Sunyaev and Y. B. Zeldovich, “The interaction of matter and radiation in the hot model of the Universe, II,” Astrophysics and Space Science 7 (1970) 20–30.
- D. J. Fixsen, “The Temperature of the Cosmic Microwave Background,” Astrophys. J. 707 (2009) 916–920 [arXiv:0911.1955].
- J. Chluba and R. A. Sunyaev, “The evolution of CMB spectral distortions in the early Universe,” Mon. Not. Roy. Astron. Soc. 419 (2012) 1294–1314 [arXiv:1109.6552].
- R. Khatri and R. A. Sunyaev, “Beyond y and \mu: the shape of the CMB spectral distortions in the intermediate epoch, 1.5x10^4 <<< z <<< 2x10^5,” JCAP 09 (2012) 016 [arXiv:1207.6654].
- J. Chluba, “Green’s function of the cosmological thermalization problem,” Mon. Not. Roy. Astron. Soc. 434 (2013) 352 [arXiv:1304.6120].
- H. Tashiro, “CMB spectral distortions and energy release in the early universe,” PTEP 2014 (2014) 06B107.