Residue Domination in Bounded-Treewidth Graphs (2403.07524v2)
Abstract: For the vertex selection problem $(\sigma,\rho)$-DomSet one is given two fixed sets $\sigma$ and $\rho$ of integers and the task is to decide whether we can select vertices of the input graph such that, for every selected vertex, the number of selected neighbors is in $\sigma$ and, for every unselected vertex, the number of selected neighbors is in $\rho$ [Telle, Nord. J. Comp. 1994]. This framework covers many fundamental graph problems such as Independent Set and Dominating Set. We significantly extend the recent result by Focke et al. [SODA 2023] to investigate the case when $\sigma$ and $\rho$ are two (potentially different) residue classes modulo $m\ge 2$. We study the problem parameterized by treewidth and present an algorithm that solves in time $m{tw} \cdot n{O(1)}$ the decision, minimization and maximization version of the problem. This significantly improves upon the known algorithms where for the case $m \ge 3$ not even an explicit running time is known. We complement our algorithm by providing matching lower bounds which state that there is no $(m-\epsilon){pw} \cdot n{O(1)}$-time algorithm parameterized by pathwidth $pw$, unless SETH fails. For $m = 2$, we extend these bounds to the minimization version as the decision version is efficiently solvable.
- Fixed parameter algorithms for DOMINATING SET and related problems on planar graphs. Algorithmica, 33(4):461–493, 2002. doi:10.1007/S00453-001-0116-5.
- Turning lights out with linear algebra. Mathematics Magazine, 71(4):300–303, 1998.
- Lights out on graphs. Mathematische Semesterberichte, 68(2):237–255, 2021. doi:10.1007/s00591-021-00297-5.
- Optimal dynamic program for r-domination problems over tree decompositions. In Jiong Guo and Danny Hermelin, editors, 11th International Symposium on Parameterized and Exact Computation, IPEC 2016, August 24-26, 2016, Aarhus, Denmark, volume 63 of LIPIcs, pages 8:1–8:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPICS.IPEC.2016.8.
- Explicit bounds for primes in arithmetic progressions. Illinois J. Math., 62(1-4):427–532, 2018. doi:10.1215/ijm/1552442669.
- Fast dynamic programming for locally checkable vertex subset and vertex partitioning problems. Theor. Comput. Sci., 511:66–76, 2013. doi:10.1016/J.TCS.2013.01.009.
- Parameterized Algorithms. Springer, 2015. doi:10.1007/978-3-319-21275-3.
- Mathieu Chapelle. Parameterized complexity of generalized domination problems on bounded tree-width graphs. CoRR, abs/1004.2642, 2010. arXiv:1004.2642v5, doi:10.48550/arxiv.1004.2642.
- Mathieu Chapelle. Décompositions de graphes : quelques limites et obstructions. (Graphs decompositions: some limites and obstructions). PhD thesis, University of Orléans, France, 2011.
- Odd neighborhood transversals on grid graphs. Discrete Mathematics, 307(17-18):2200–2208, 2007. doi:10.1016/j.disc.2006.11.006.
- The complexity of satisfiability of small depth circuits. In IWPEC, volume 5917 of LNCS, pages 75–85, 2009.
- On non-z(mod k) dominating sets. Discussiones Mathematicae Graph Theory, 23(1):189–199, 2003.
- The odd domination number of a graph. Journal of Combinatorial Mathematics and Combinatorial Computing, 44:65–84, 2003.
- Odd and residue domination numbers of a graph. Discussiones Mathematicae Graph Theory, 21(1):119–136, 2001. doi:10.7151/dmgt.1137.
- Tight conditional lower bounds for counting perfect matchings on graphs of bounded treewidth, cliquewidth, and genus. In Robert Krauthgamer, editor, Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 1650–1669. SIAM, 2016. doi:10.1137/1.9781611974331.CH113.
- Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite graphs. Inf. Comput., 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.
- Sort and search: Exact algorithms for generalized domination. Inf. Process. Lett., 109(14):795–798, 2009. doi:10.1016/J.IPL.2009.03.023.
- Efficient computation of representative families with applications in parameterized and exact algorithms. J. ACM, 63(4):29:1–29:60, 2016. doi:10.1145/2886094.
- Tight complexity bounds for counting generalized dominating sets in bounded-treewidth graphs. In Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023, pages 3664–3683. SIAM, 2023. doi:10.1137/1.9781611977554.CH140.
- Tight complexity bounds for counting generalized dominating sets in bounded-treewidth graphs Part I: Algorithmic results, June 2023. arXiv:2211.04278, doi:10.48550/arxiv.2211.04278.
- Tight complexity bounds for counting generalized dominating sets in bounded-treewidth graphs Part II: Hardness results, May 2023. arXiv:2306.03640, doi:10.48550/arXiv.2306.03640.
- A survey of the game ”lights out!”. In Andrej Brodnik, Alejandro López-Ortiz, Venkatesh Raman, and Alfredo Viola, editors, Space-Efficient Data Structures, Streams, and Algorithms - Papers in Honor of J. Ian Munro on the Occasion of His 66th Birthday, volume 8066 of Lecture Notes in Computer Science, pages 176–198. Springer, 2013. doi:10.1007/978-3-642-40273-9_13.
- A parity domination problem in graphs with bounded treewidth and distance-hereditary graphs. Computing, 82(2-3):171–187, July 2008. doi:10.1007/s00607-008-0005-8.
- Odd and even dominating sets with open neighborhoods. Ars Combinatoria, 83:229–247, 2007.
- Characterizing switch-setting problems. Linear and Multilinear Algebra, 43:121–135, 1997.
- Setting switches in a grid. Technical Report TR-95-20, West Virginia University, Dept. of Statistics and Computer, 1995.
- On generalizing the ”Lights Out” game and a generalization of parity domination. Ars Comb., 111:273–288, 2013.
- Independent sets with domination constraints. Discret. Appl. Math., 99(1-3):39–54, 2000. doi:10.1016/S0166-218X(99)00124-9.
- Mod-2 independence and domination in graphs. Int. J. Found. Comput. Sci., 11(3):355–363, 2000. doi:10.1142/S0129054100000272.
- On the Complexity of k-SAT. J. Comput. Syst. Sci., 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.
- Representative sets and irrelevant vertices: New tools for kernelization. J. ACM, 67(3):16:1–16:50, 2020. doi:10.1145/3390887.
- Michael Lampis. Finer tight bounds for coloring on clique-width. SIAM J. Discret. Math., 34(3):1538–1558, 2020. doi:10.1137/19M1280326.
- Known algorithms on graphs of bounded treewidth are probably optimal. ACM Transactions on Algorithms, 14(2):13:1–13:30, April 2018. doi:10.1145/3170442.
- Igor Minevich. Symmetric matrices over f_2 and the lights out problem. CoRR, abs/1206.2973, 2012. arXiv:1206.2973, doi:10.48550/arxiv.1206.2973.
- Degrees and gaps: Tight complexity results of general factor problems parameterized by treewidth and cutwidth. In Nikhil Bansal, Emanuela Merelli, and James Worrell, editors, 48th International Colloquium on Automata, Languages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference), volume 198 of LIPIcs, pages 95:1–95:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPICS.ICALP.2021.95.
- Anti-factor is FPT parameterized by treewidth and list size (but counting is hard). In Holger Dell and Jesper Nederlof, editors, 17th International Symposium on Parameterized and Exact Computation, IPEC 2022, September 7-9, 2022, Potsdam, Germany, volume 249 of LIPIcs, pages 22:1–22:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPICS.IPEC.2022.22.
- Klaus Sutner. Additive automata on graphs. Complex Systems, 2(6):649–661, 1988.
- Klaus Sutner. Linear cellular automata and the garden-of-eden. The Mathematical Intelligencer, 11(2):49–53, 1989. doi:10.1007/BF03023823.
- Representative families: A unified tradeoff-based approach. In Andreas S. Schulz and Dorothea Wagner, editors, Algorithms - ESA 2014 - 22th Annual European Symposium, Wroclaw, Poland, September 8-10, 2014. Proceedings, volume 8737 of Lecture Notes in Computer Science, pages 786–797. Springer, 2014. doi:10.1007/978-3-662-44777-2_65.
- Jan Arne Telle. Complexity of domination-type problems in graphs. Nord. J. Comput., 1(1):157–171, 1994.
- Johan M. M. van Rooij. Fast algorithms for join operations on tree decompositions. In Fedor V. Fomin, Stefan Kratsch, and Erik Jan van Leeuwen, editors, Treewidth, Kernels, and Algorithms - Essays Dedicated to Hans L. Bodlaender on the Occasion of His 60th Birthday, volume 12160 of Lecture Notes in Computer Science, pages 262–297. Springer, 2020. doi:10.1007/978-3-030-42071-0_18.
- Dynamic programming on tree decompositions using generalised fast subset convolution. In Amos Fiat and Peter Sanders, editors, Algorithms - ESA 2009, 17th Annual European Symposium, Copenhagen, Denmark, September 7-9, 2009. Proceedings, volume 5757 of Lecture Notes in Computer Science, pages 566–577. Springer, 2009. doi:10.1007/978-3-642-04128-0_51.