Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Survey on Federated Learning in Intelligent Transportation Systems (2403.07444v2)

Published 12 Mar 2024 in cs.NI and eess.SP

Abstract: The development of Intelligent Transportation System (ITS) has brought about comprehensive urban traffic information that not only provides convenience to urban residents in their daily lives but also enhances the efficiency of urban road usage, leading to a more harmonious and sustainable urban life. Typical scenarios in ITS mainly include traffic flow prediction, traffic target recognition, and vehicular edge computing. However, most current ITS applications rely on a centralized training approach where users upload source data to a cloud server with high computing power for management and centralized training. This approach has limitations such as poor real-time performance, data silos, and difficulty in guaranteeing data privacy. To address these limitations, federated learning (FL) has been proposed as a promising solution. In this paper, we present a comprehensive review of the application of FL in ITS, with a particular focus on three key scenarios: traffic flow prediction, traffic target recognition, and vehicular edge computing. For each scenario, we provide an in-depth analysis of its key characteristics, current challenges, and specific manners in which FL is leveraged. Moreover, we discuss the benefits that FL can offer as a potential solution to the limitations of the centralized training approach currently used in ITS applications.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (66)
  1. J. Zhang, F.-Y. Wang, K. Wang, W.-H. Lin, X. Xu, and C. Chen, “Data-driven intelligent transportation systems: A survey,” IEEE Transactions on Intelligent Transportation Systems, vol. 12, no. 4, pp. 1624–1639, 2011.
  2. L. Zhu, F. R. Yu, Y. Wang, B. Ning, and T. Tang, “Big data analytics in intelligent transportation systems: A survey,” IEEE Transactions on Intelligent Transportation Systems, vol. 20, no. 1, pp. 383–398, 2018.
  3. Y. Lv, Y. Duan, W. Kang, Z. Li, and F.-Y. Wang, “Traffic flow prediction with big data: A deep learning approach,” IEEE Transactions on Intelligent Transportation Systems, vol. 16, no. 2, pp. 865–873, 2014.
  4. Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning: Concept and applications,” ACM Transactions on Intelligent Systems and Technology (TIST), vol. 10, no. 2, pp. 1–19, 2019.
  5. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-efficient learning of deep networks from decentralized data,” in Artificial intelligence and statistics, pp. 1273–1282, PMLR, 2017.
  6. K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov, C. Kiddon, J. Konečnỳ, S. Mazzocchi, B. McMahan, et al., “Towards federated learning at scale: System design,” Proceedings of machine learning and systems, vol. 1, pp. 374–388, 2019.
  7. Y. Lu, X. Huang, Y. Dai, S. Maharjan, and Y. Zhang, “Differentially private asynchronous federated learning for mobile edge computing in urban informatics,” IEEE Transactions on Industrial Informatics, vol. 16, no. 3, pp. 2134–2143, 2019.
  8. D. A. Tedjopurnomo, Z. Bao, B. Zheng, F. M. Choudhury, and A. K. Qin, “A survey on modern deep neural network for traffic prediction: Trends, methods and challenges,” IEEE Transactions on Knowledge and Data Engineering, vol. 34, no. 4, pp. 1544–1561, 2020.
  9. S. Guo, Y. Lin, N. Feng, C. Song, and H. Wan, “Attention based spatial-temporal graph convolutional networks for traffic flow forecasting,” in Proceedings of the AAAI conference on artificial intelligence, vol. 33, pp. 922–929, 2019.
  10. B. Yu, H. Yin, and Z. Zhu, “Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting,” in Proceedings of the 27th International Joint Conference on Artificial Intelligence, pp. 3634–3640, 2018.
  11. H. Wang, R. Zhang, X. Cheng, and L. Yang, “Hierarchical traffic flow prediction based on spatial-temporal graph convolutional network,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 9, pp. 16137–16147, 2022.
  12. M. Xia, D. Jin, and J. Chen, “Short-term traffic flow prediction based on graph convolutional networks and federated learning,” IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 1, pp. 1191–1203, 2023.
  13. C. Zhang, S. Zhang, J. James, and S. Yu, “Fastgnn: A topological information protected federated learning approach for traffic speed forecasting,” IEEE Transactions on Industrial Informatics, vol. 17, no. 12, pp. 8464–8474, 2021.
  14. X. Yuan, J. Chen, J. Yang, N. Zhang, T. Yang, T. Han, and A. Taherkordi, “Fedstn: Graph representation driven federated learning for edge computing enabled urban traffic flow prediction,” IEEE Transactions on Intelligent Transportation Systems, 2022.
  15. Y. Qi, M. S. Hossain, J. Nie, and X. Li, “Privacy-preserving blockchain-based federated learning for traffic flow prediction,” Future Generation Computer Systems, vol. 117, pp. 328–337, 2021.
  16. C. Meese, H. Chen, S. A. Asif, W. Li, C.-C. Shen, and M. Nejad, “Bfrt: Blockchained federated learning for real-time traffic flow prediction,” in 2022 22nd IEEE International Symposium on Cluster, Cloud and Internet Computing (CCGrid), pp. 317–326, IEEE, 2022.
  17. M. Akallouch, O. Akallouch, K. Fardousse, A. Bouhoute, and I. Berrada, “Prediction and privacy scheme for traffic flow estimation on the highway road network,” Information, vol. 13, no. 8, 2022.
  18. J. Deng and G. Shen, “Federated learning-based privacy-preserving traffic flow prediction scheme for vanets,” in 2022 4th International Conference on Communications, Information System and Computer Engineering (CISCE), pp. 374–378, IEEE, 2022.
  19. Y. Liu, J. James, J. Kang, D. Niyato, and S. Zhang, “Privacy-preserving traffic flow prediction: A federated learning approach,” IEEE Internet of Things Journal, vol. 7, no. 8, pp. 7751–7763, 2020.
  20. C. Zhang, S. Zhang, S. Yu, and J. James, “Graph-based traffic forecasting via communication-efficient federated learning,” in 2022 IEEE Wireless Communications and Networking Conference (WCNC), pp. 2041–2046, IEEE, 2022.
  21. X. Yuan, J. Chen, N. Zhang, C. Zhu, Q. Ye, and X. S. Shen, “Fedtse: Low-cost federated learning for privacy-preserved traffic state estimation in iov,” in IEEE INFOCOM 2022-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 1–6, IEEE, 2022.
  22. Z. Zhang, H. Wang, Z. Fan, J. Chen, X. Song, and R. Shibasaki, “Gof-tte: Generative online federated learning framework for travel time estimation,” IEEE Internet of Things Journal, vol. 9, no. 23, pp. 24107–24121, 2022.
  23. Y. Zhu, Y. Ye, Y. Liu, and J. James, “Cross-area travel time uncertainty estimation from trajectory data: a federated learning approach,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 12, pp. 24966–24978, 2022.
  24. W. Wang, G. Yang, L. Bao, K. Ma, H. Zhou, et al., “A privacy-preserving crowd flow prediction framework based on federated learning during epidemics,” Security and Communication Networks, vol. 2022, 2022.
  25. F. Z. Errounda and Y. Liu, “A mobility forecasting framework with vertical federated learning,” in 2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC), pp. 301–310, IEEE, 2022.
  26. T. Zeng, J. Guo, K. J. Kim, K. Parsons, P. Orlik, S. Di Cairano, and W. Saad, “Multi-task federated learning for traffic prediction and its application to route planning,” in 2021 IEEE Intelligent Vehicles Symposium (IV), pp. 451–457, IEEE, 2021.
  27. S. M. Halim, L. Khan, and B. Thuraisingham, “Next-location prediction using federated learning on a blockchain,” in 2020 IEEE second international conference on cognitive machine intelligence (CogMI), pp. 244–250, IEEE, 2020.
  28. X. Huang, P. Li, R. Yu, Y. Wu, K. Xie, and S. Xie, “Fedparking: A federated learning based parking space estimation with parked vehicle assisted edge computing,” IEEE Transactions on Vehicular Technology, vol. 70, no. 9, pp. 9355–9368, 2021.
  29. M. M. Rahman, M. A. Quader, M. A. Quader, and M. A. Razzaque, “Accurate identification of potholes on the road using federated learning,” in 2021 3rd International Conference on Sustainable Technologies for Industry 4.0 (STI), pp. 1–6, IEEE, 2021.
  30. S. Alshammari and S. Song, “3pod: Federated learning-based 3 dimensional pothole detection for smart transportation,” in 2022 IEEE International Smart Cities Conference (ISC2), pp. 1–7, IEEE, 2022.
  31. Y. Yuan, Y. Yuan, T. Baker, L. M. Kolbe, and D. Hogrefe, “Fedrd: Privacy-preserving adaptive federated learning framework for intelligent hazardous road damage detection and warning,” Future Generation Computer Systems, vol. 125, pp. 385–398, 2021.
  32. K. Xie, Z. Zhang, B. Li, J. Kang, D. Niyato, S. Xie, and Y. Wu, “Efficient federated learning with spike neural networks for traffic sign recognition,” IEEE Transactions on Vehicular Technology, vol. 71, no. 9, pp. 9980–9992, 2022.
  33. C. Xu and Y. Mao, “An improved traffic congestion monitoring system based on federated learning,” Information, vol. 11, no. 7, p. 365, 2020.
  34. D. Ye, R. Yu, M. Pan, and Z. Han, “Federated learning in vehicular edge computing: A selective model aggregation approach,” IEEE Access, vol. 8, pp. 23920–23935, 2020.
  35. H. Zhang, J. Bosch, H. H. Olsson, and A. C. Koppisetty, “Af-dndf: Asynchronous federated learning of deep neural decision forests,” in 2021 47th Euromicro Conference on Software Engineering and Advanced Applications (SEAA), pp. 308–315, IEEE, 2021.
  36. M. Aparna, R. Gandhiraj, and M. Panda, “Steering angle prediction for autonomous driving using federated learning: the impact of vehicle-to-everything communication,” in 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT), pp. 1–7, IEEE, 2021.
  37. H. Zhang, J. Bosch, and H. H. Olsson, “End-to-end federated learning for autonomous driving vehicles,” in 2021 International Joint Conference on Neural Networks (IJCNN), pp. 1–8, IEEE, 2021.
  38. H. Zhang, J. Bosch, and H. H. Olsson, “Real-time end-to-end federated learning: An automotive case study,” in 2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC), pp. 459–468, IEEE, 2021.
  39. A. Zafar, C. Prehofer, and C.-H. Cheng, “Federated learning for driver status monitoring,” in 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), pp. 1463–1469, IEEE, 2021.
  40. D. Y. Zhang, Z. Kou, and D. Wang, “Fedsens: A federated learning approach for smart health sensing with class imbalance in resource constrained edge computing,” in IEEE INFOCOM 2021-IEEE Conference on Computer Communications, pp. 1–10, IEEE, 2021.
  41. L. Zhang, H. Saito, L. Yang, and J. Wu, “Privacy-preserving federated transfer learning for driver drowsiness detection,” IEEE Access, vol. 10, pp. 80565–80574, 2022.
  42. Y. Chen, C. Wang, and B. Kim, “Federated learning with infrastructure resource limitations in vehicular object detection,” in 2021 IEEE/ACM Symposium on Edge Computing (SEC), pp. 366–370, IEEE, 2021.
  43. D. Jallepalli, N. C. Ravikumar, P. V. Badarinath, S. Uchil, and M. A. Suresh, “Federated learning for object detection in autonomous vehicles,” in 2021 IEEE Seventh International Conference on Big Data Computing Service and Applications (BigDataService), pp. 107–114, IEEE, 2021.
  44. R. Meneguette, R. De Grande, J. Ueyama, G. P. R. Filho, and E. Madeira, “Vehicular edge computing: architecture, resource management, security, and challenges,” ACM Computing Surveys (CSUR), vol. 55, no. 1, pp. 1–46, 2021.
  45. L. Liu, C. Chen, Q. Pei, S. Maharjan, and Y. Zhang, “Vehicular edge computing and networking: A survey,” Mobile networks and applications, vol. 26, pp. 1145–1168, 2021.
  46. A. Hammoud, H. Sami, A. Mourad, H. Otrok, R. Mizouni, and J. Bentahar, “Ai, blockchain, and vehicular edge computing for smart and secure iov: Challenges and directions,” IEEE Internet of Things Magazine, vol. 3, no. 2, pp. 68–73, 2020.
  47. Z. Du, C. Wu, T. Yoshinaga, K.-L. A. Yau, Y. Ji, and J. Li, “Federated learning for vehicular internet of things: Recent advances and open issues,” IEEE Open Journal of the Computer Society, vol. 1, pp. 45–61, 2020.
  48. W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y.-C. Liang, Q. Yang, D. Niyato, and C. Miao, “Federated learning in mobile edge networks: A comprehensive survey,” IEEE Communications Surveys & Tutorials, vol. 22, no. 3, pp. 2031–2063, 2020.
  49. L. Barbieri, S. Savazzi, and M. Nicoli, “Communication-efficient distributed learning in v2x networks: Parameter selection and quantization,” in GLOBECOM 2022 - 2022 IEEE Global Communications Conference, pp. 603–608, 2022.
  50. S. Shen, C. Yu, K. Zhang, X. Chen, H. Chen, and S. Ci, “Communication-efficient federated learning for connected vehicles with constrained resources,” in 2021 International Wireless Communications and Mobile Computing (IWCMC), pp. 1636–1641, 2021.
  51. Y. Li, Y. Guo, M. Alazab, S. Chen, C. Shen, and K. Yu, “Joint optimal quantization and aggregation of federated learning scheme in vanets,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 10, pp. 19852–19863, 2022.
  52. H. Xiao, J. Zhao, Q. Pei, J. Feng, L. Liu, and W. Shi, “Vehicle selection and resource optimization for federated learning in vehicular edge computing,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 8, pp. 11073–11087, 2021.
  53. F. Liang, Q. Yang, R. Liu, J. Wang, K. Sato, and J. Guo, “Semi-synchronous federated learning protocol with dynamic aggregation in internet of vehicles,” IEEE Transactions on Vehicular Technology, vol. 71, no. 5, pp. 4677–4691, 2022.
  54. S. Liu, J. Yu, X. Deng, and S. Wan, “Fedcpf: An efficient-communication federated learning approach for vehicular edge computing in 6g communication networks,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 2, pp. 1616–1629, 2021.
  55. W. Bao, C. Wu, S. Guleng, J. Zhang, K.-L. A. Yau, and Y. Ji, “Edge computing-based joint client selection and networking scheme for federated learning in vehicular iot,” China Communications, vol. 18, no. 6, pp. 39–52, 2021.
  56. D. Chen, C. S. Hong, Y. Zha, Y. Zhang, X. Liu, and Z. Han, “Fedsvrg based communication efficient scheme for federated learning in mec networks,” IEEE Transactions on Vehicular Technology, vol. 70, no. 7, pp. 7300–7304, 2021.
  57. Y. Lu, X. Huang, K. Zhang, S. Maharjan, and Y. Zhang, “Blockchain empowered asynchronous federated learning for secure data sharing in internet of vehicles,” IEEE Transactions on Vehicular Technology, vol. 69, no. 4, pp. 4298–4311, 2020.
  58. X. Zhou, W. Liang, J. She, Z. Yan, I. Kevin, and K. Wang, “Two-layer federated learning with heterogeneous model aggregation for 6g supported internet of vehicles,” IEEE Transactions on Vehicular Technology, vol. 70, no. 6, pp. 5308–5317, 2021.
  59. W. M. Danquah and D. T. Altilar, “Unidrm: Unified data and resource management for federated vehicular cloud computing,” IEEE Access, vol. 9, pp. 157052–157067, 2021.
  60. A. Taïk, Z. Mlika, and S. Cherkaoui, “Clustered vehicular federated learning: Process and optimization,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 12, pp. 25371–25383, 2022.
  61. Z. Ji, L. Chen, N. Zhao, Y. Chen, G. Wei, and F. R. Yu, “Computation offloading for edge-assisted federated learning,” IEEE Transactions on Vehicular Technology, vol. 70, no. 9, pp. 9330–9344, 2021.
  62. Y. Li, X. Tao, X. Zhang, J. Liu, and J. Xu, “Privacy-preserved federated learning for autonomous driving,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 7, pp. 8423–8434, 2021.
  63. B. Ghimire, D. B. Rawat, and A. Rahman, “Data-driven quickest change detection for securing federated learning for internet-of-vehicles,” in 2021 IEEE Global Communications Conference (GLOBECOM), pp. 1–6, IEEE, 2021.
  64. P. Lv, L. Xie, J. Xu, X. Wu, and T. Li, “Misbehavior detection in vehicular ad hoc networks based on privacy-preserving federated learning and blockchain,” IEEE Transactions on Network and Service Management, 2022.
  65. L. Li, Y. Fan, M. Tse, and K.-Y. Lin, “A review of applications in federated learning,” Computers & Industrial Engineering, vol. 149, p. 106854, 2020.
  66. Q. Kong, F. Yin, R. Lu, B. Li, X. Wang, S. Cui, and P. Zhang, “Privacy-preserving aggregation for federated learning-based navigation in vehicular fog,” IEEE Transactions on Industrial Informatics, vol. 17, no. 12, pp. 8453–8463, 2021.
Citations (7)

Summary

We haven't generated a summary for this paper yet.