Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spatially oscillating correlation functions in $\left(2+1\right)$-dimensional four-fermion models: The mixing of scalar and vector modes at finite density (2403.07430v2)

Published 12 Mar 2024 in hep-ph, cond-mat.str-el, and nucl-th

Abstract: In this work, we demonstrate that the mixing of scalar and vector condensates produces spatially oscillating, but exponentially damped correlation functions in fermionic theories at finite density and temperature. We find a regime exhibiting this oscillatory behavior in a Gross-Neveu-type model that also features vector interactions within the mean-field approximation. The existence of this regime aligns with expectations based on symmetry arguments, that are also applicable to QCD at finite baryon density. We compute the phase diagram including both homogeneous phases and regions with spatially oscillating, exponentially damped correlation functions at finite temperature and chemical potential for different strengths of the vector coupling. Furthermore, we find that inhomogeneous condensates are disfavored compared to homogeneous ones akin to previous findings without vector interactions. We show that our results are valid for a broad class of $\left(2+1\right)$-dimensional models with local four-fermion interactions.

Citations (6)

Summary

We haven't generated a summary for this paper yet.