Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Parameterized Task Graph Scheduling Algorithm for Comparing Algorithmic Components (2403.07112v1)

Published 11 Mar 2024 in cs.DC

Abstract: Scheduling distributed applications modeled as directed, acyclic task graphs to run on heterogeneous compute networks is a fundamental (NP-Hard) problem in distributed computing for which many heuristic algorithms have been proposed over the past decades. Many of these algorithms fall under the list-scheduling paradigm, whereby the algorithm first computes priorities for the tasks and then schedules them greedily to the compute node that minimizes some cost function. Thus, many algorithms differ from each other only in a few key components (e.g., the way they prioritize tasks, their cost functions, where the algorithms consider inserting tasks into a partially complete schedule, etc.). In this paper, we propose a generalized parametric list-scheduling algorithm that allows mixing and matching different algorithmic components to produce 72 unique algorithms. We benchmark these algorithms on four datasets to study the individual and combined effects of different algorithmic components on performance and runtime.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (13)
  1. A. Bazzi and A. Norouzi-Fard, “Towards tight lower bounds for scheduling problems,” in Algorithms - ESA 2015 - 23rd Annual European Symposium, Patras, Greece, September 14-16, 2015, Proceedings, ser. Lecture Notes in Computer Science, N. Bansal and I. Finocchi, Eds., vol. 9294.   Springer, 2015, pp. 118–129. [Online]. Available: https://doi.org/10.1007/978-3-662-48350-3_11
  2. A. Authors, “Scheduling algorithms gathered,” Github, 2023. [Online]. Available: https://anonymous.4open.science/r/saga-1F6D/README.md
  3. R. L. Graham, “Bounds on multiprocessing timing anomalies,” SIAM Journal on Applied Mathematics, vol. 17, no. 2, pp. 416–429, 1969. [Online]. Available: https://doi.org/10.1137/0117039
  4. H. Topcuoglu, S. Hariri, and M. Wu, “Task scheduling algorithms for heterogeneous processors,” in 8th Heterogeneous Computing Workshop, HCW 1999, San Juan, Puerto Rico, April12, 1999.   IEEE Computer Society, 1999, pp. 3–14. [Online]. Available: https://doi.org/10.1109/HCW.1999.765092
  5. H. Wang and O. Sinnen, “List-scheduling versus cluster-scheduling,” IEEE Trans. Parallel Distributed Syst., vol. 29, no. 8, pp. 1736–1749, 2018. [Online]. Available: https://doi.org/10.1109/TPDS.2018.2808959
  6. A. K. Maurya and A. K. Tripathi, “On benchmarking task scheduling algorithms for heterogeneous computing systems,” J. Supercomput., vol. 74, no. 7, pp. 3039–3070, 2018. [Online]. Available: https://doi.org/10.1007/s11227-018-2355-0
  7. Y.-K. Kwok and I. Ahmad, “Benchmarking the task graph scheduling algorithms,” in Proceedings of the First Merged International Parallel Processing Symposium and Symposium on Parallel and Distributed Processing, 1998, pp. 531–537.
  8. T. D. Braun, H. J. Siegel, N. Beck, L. Bölöni, M. Maheswaran, A. I. Reuther, J. P. Robertson, M. D. Theys, B. Yao, D. A. Hensgen, and R. F. Freund, “A comparison of eleven static heuristics for mapping a class of independent tasks onto heterogeneous distributed computing systems,” J. Parallel Distributed Comput., vol. 61, no. 6, pp. 810–837, 2001. [Online]. Available: https://doi.org/10.1006/jpdc.2000.1714
  9. T. Braun, H. Siegal, N. Beck, L. Boloni, M. Maheswaran, A. Reuther, J. Robertson, M. Theys, B. Yao, D. Hensgen, and R. Freund, “A comparison study of static mapping heuristics for a class of meta-tasks on heterogeneous computing systems,” in Proceedings. Eighth Heterogeneous Computing Workshop (HCW’99), 1999, pp. 15–29.
  10. T. N’Takpé and F. Suter, “Critical path and area based scheduling of parallel task graphs on heterogeneous platforms,” in 12th International Conference on Parallel and Distributed Systems, ICPADS 2006, Minneapolis, Minnesota, USA, July 12-15, 2006.   IEEE Computer Society, 2006, pp. 3–10. [Online]. Available: https://doi.org/10.1109/ICPADS.2006.32
  11. D. Cordeiro, G. Mouniê, S. Perarnau, D. Trystram, J.-M. Vincent, and F. Wagner, “Random graph generation for scheduling simulations.”   ICST, 5 2010.
  12. R. F. da Silva, R. Mayani, Y. Shi, A. R. Kemanian, M. Rynge, and E. Deelman, “Empowering agroecosystem modeling with HTC scientific workflows: The cycles model use case,” in 2019 IEEE International Conference on Big Data (IEEE BigData), Los Angeles, CA, USA, December 9-12, 2019, C. K. Baru, J. Huan, L. Khan, X. Hu, R. Ak, Y. Tian, R. S. Barga, C. Zaniolo, K. Lee, and Y. F. Ye, Eds.   IEEE, 2019, pp. 4545–4552. [Online]. Available: https://doi.org/10.1109/BigData47090.2019.9006107
  13. J. Coleman and B. Krishnamachari, “Comparing task graph scheduling algorithms: An adversarial approach,” under review.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com