A perspective on active glassy dynamics in biological systems (2403.06799v1)
Abstract: Dynamics is central to living systems. In the last two decades, experiments have revealed that the dynamics in diverse biological systems - from intracellular cytoplasm to cellular and organismal aggregates - are remarkably similar to that in dense systems of inanimate particles in equilibrium. They show a glass transition from a solid-like jammed state to a fluid-like flowing state, where a moderate change in control parameter leads to an enormous variation in relaxation time. However, biological systems have crucial differences from the equilibrium systems: the former have activity that drives them out of equilibrium, novel control parameters, and enormous levels of complexity. These active systems showing glassy dynamics are known as active glasses. The field is at the interface of physics and biology, freely borrowing tools from both disciplines and promising novel, fascinating discoveries. We review the experiments that started this field, simulations that have been instrumental for insights, and theories that have helped unify diverse phenomena, reveal correlations, and make novel quantitative predictions. We discuss the primary characteristics that define a glassy system. For most concepts, we first discuss the known equilibrium scenario and then present the key aspects when activity is introduced. We end the article with a discussion of the challenges in the field and possible future directions.
- L. Berthier and G. Biroli, Rev. Mod. Phys. 83, 587 (2011).
- W. Götze, Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory (Oxford University Press, 2008).
- J. C. Phillips, Rep. Prog. Phys. 59, 1133 (1996).
- E. R. Weeks and D. Weitz, Chem. Phys. 284, 361 (2002).
- S. Franz and G. Parisi, J. Phys.: Condens. Matter 12, 6335 (2000).
- L. F. Cugliandolo and J. Kurchan, Phys. Rev. Lett. 71, 173 (1993).
- S. K. Nandi and S. Ramaswamy, Phys. Rev. Lett. 109, 115702 (2012).
- S. C. Takatori and K. K. Mandadapu, arXiv: , 2003.05618 (2020).
- P. Friedl and K. Wolf, Nature Reviews Cancer 3, 362 (2003).
- P. Friedl and D. Gilmour, Nat. Rev. Mol. Cell Biol. 10, 445 (2009).
- L. Berthier, Phys. Rev. Lett. 112, 220602 (2014).
- L. Berthier and J. Kurchan, Nat. Phys. 9, 310 (2013).
- G. Szamel, Phys. Rev. E 90, 012111 (2014a).
- G. Szamel, Phys. Rev. E 93, 012603 (2016).
- M. Feng and Z. Hou, Soft Matter 13, 4464 (2017).
- S. K. Nandi and N. S. Gov, Soft Matter 13, 7609 (2017).
- V. E. Debets and L. M. C. Janssen, Phys. Rev. Res. 4, L042033 (2022a).
- U. S. Schwarz and S. A. Safran, Rev. Mod. Phys. 85, 1327 (2013).
- S. Gilbert and M. J. F. Barresi, Developmental Biology, 11th ed. (Sinauer Associates, Inc, 2016).
- S. Ramaswamy, Ann. Rev. Condens. Matt. Phys. 1, 323 (2010).
- T. Vicsek and A. Zafeiris, Phys. Rep. 517, 71 (2012), collective motion.
- M. Kardar, Statistical Physics of Fields (Cambridge University Press, 2019).
- F. Graner and J. A. Glazier, Phys. Rev. Lett. 69, 2013 (1992).
- J. A. Glazier and F. Graner, Phys. Rev. E 47, 2128 (1993).
- P. Hogeweg, J. Theor. Biol. 203, 317 (2000).
- S. Sadhukhan and S. K. Nandi, Phys. Rev. E 103, 062403 (2021).
- S. Sadhukhan and S. K. Nandi, eLife 11, e76406 (2022).
- L. Berthier and T. A. Witten, Phys. Rev. E 80, 021502 (2009a).
- G. Biroli and J. P. Garrahan, J. Chem. Phys. 138, 12A301 (2013).
- W. Kob and H. C. Andersen, Phys. Rev. E 52, 4134 (1995a).
- L. M. C. Janssen, Journal of Physics: Condensed Matter 31, 503002 (2019).
- A. Cavagna, Phys. Rep. 476, 51 (2009).
- M. T. Cicerone and M. D. Ediger, J. Chem. Phys. 104, 7210 (1996).
- W. Kob and H. C. Andersen, Phys. Rev. E 51, 4626 (1995b).
- C. A. Angell, Science 267, 1924 (1995).
- C. Angell, J. Non-Crys. Solids 131-133, 13 (1991).
- C. A. Angell, J. Res. Natl. Inst. Stand. Technol. 102, 171 (1997).
- L. Berthier and T. A. Witten, Europhys. Lett. 86, 10001 (2009b).
- W. Kob and J.-L. Barrat, Phys. Rev. Lett. 78, 4581 (1997).
- S. K. Nandi and S. Ramaswamy, Phys. Rev. E 94, 012607 (2016).
- P. G. Debenedetti and F. H. Stillinger, Nature 410, 259 (2001).
- C. Åberg and B. Poolman, Biophysical Journal 120, 2355 (2021).
- G. Parisi, Nature 433, 221 (2005).
- G. Kurchan, Nature 433, 222 (2005).
- S. K. Nandi and N. S. Gov, Eur. Phys. J. E 41, 117 (2018).
- L. F. Cugliandolo, J. Phys. A: Math. Theor. 44, 483001 (2011).
- D. Helbing, Rev. Mod. Phys. 73, 1067 (2001).
- N. Bain and D. Bartolo, Science 363, 46 (2019).
- J. Lin, Physical Review Research 4, L022012 (2022).
- J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids, 4th ed. (Elsevier, 2013).
- H. C. Berg and L. Turner, Nature 278, 349 (1979).
- D. Ghoshal and A. Joy, Phys. Rev. E 102, 062605 (2020).
- S. Chaki and R. Chakrabarti, Soft Matter 16, 7103 (2020).
- R. Mandal and P. Sollich, Phys. Rev. Lett. 125, 218001 (2020).
- A. Mutneja and S. Karmakar, Phys. Rev. E 108, L022601 (2023).
- A. S. Mikhailov and R. Kapral, Proc. Natl. Acad. Sci. (USA) 112, E3639 (2015).
- D. Hexner and D. Levine, Phys. Rev. Lett. 114, 110602 (2015).
- D. Hexner and D. Levine, Phys. Rev. Lett. 118, 020601 (2017).
- G. Szamel, Phys. Rev. E 90, 012111 (2014b).
- H. Honda and G. Eguchi, J. Theor. Biol. 84, 575 (1980).
- M. Marder, Phys. Rev. A 36, 438(R) (1987).
- M. Nonomura, PLoS ONE 7, e33501 (2012).
- M. Durand and E. Guesnet, Comp. Phys. Comm. 208, 54 (2016).
- T. Nagai and H. Honda, Phys. Rev. E 80, 061903 (2009).
- D. M. Sussman and M. Merkel, Soft Matter 14, 3397 (2018).
- M. Chiang and D. Marenduzzo, Europhys. Lett. 116, 28009 (2016).
- S. Sadhukhan, M. Nandi, S. Pandey, M. Paoluzzi, N. Gov, C. Dasgupta, and S. Nandi, “Random first order transition theory for active confluent cell monolayer,” (2024), manuscript under preparation.
- S. P. Das, Rev. Mod. Phys. 76, 785 (2004).
- D. R. Reichman and P. Charbonneau, J. Stat. Mech. , P05013 (2005).
- L. M. C. Janssen, Front. Phys. 6, 97 (2018).
- G. Szamel, J. Chem. Phys. 150, 124901 (2019).
- M. Fuchs and M. E. Cates, Phys. Rev. Lett. 89, 248304 (2002).
- M. Fuchs and M. E. Cates, Faraday Discus. 123, 267 (2003).
- V. E. Debets and L. M. Janssen, J. Chem. Phys. 157, 224902 (2022b).
- T. R. Kirkpatrick and D. Thirumalai, Phys. Rev. Lett. 58, 2091 (1987).
- V. Lubchenko and P. G. Wolynes, Ann. Rev. Phys. Chem. 58, 235 (2007).
- T. R. Kirkpatrick and D. Thirumalai, Rev. Mod. Phys. 87, 183 (2015).
- W. Kauzmann, Chemical Reviews 43, 219 (1948).
- J. B. Moseley and P. Nurse, Cell 142, 189 (2010).
- T. M. Nguyen and M. Aragona, Seminars in Cell Dev. Biol. 130, 79 (2022).
- G. Parisi and F. Zamponi, Rev. Mod. Phys. 82, 789 (2010).
- M. E. Cates and J. Tailleur, Ann. Rev. Condens. Matt. Phys. 6, 219 (2015).
- M. E. Cates and J. Tailleur, Europhys. Lett. 101, 20010 (2013).