Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

Redefining Event Types and Group Evolution in Temporal Data (2403.06771v1)

Published 11 Mar 2024 in cs.LG and cs.SI

Abstract: Groups -- such as clusters of points or communities of nodes -- are fundamental when addressing various data mining tasks. In temporal data, the predominant approach for characterizing group evolution has been through the identification of events". However, the events usually described in the literature, e.g., shrinks/growths, splits/merges, are often arbitrarily defined, creating a gap between such theoretical/predefined types and real-data group observations. Moving beyond existing taxonomies, we think of events asarchetypes" characterized by a unique combination of quantitative dimensions that we call ``facets". Group dynamics are defined by their position within the facet space, where archetypal events occupy extremities. Thus, rather than enforcing strict event types, our approach can allow for hybrid descriptions of dynamics involving group proximity to multiple archetypes. We apply our framework to evolving groups from several face-to-face interaction datasets, showing it enables richer, more reliable characterization of group dynamics with respect to state-of-the-art methods, especially when the groups are subject to complex relationships. Our approach also offers intuitive solutions to common tasks related to dynamic group analysis, such as choosing an appropriate aggregation scale, quantifying partition stability, and evaluating event quality.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. Fortunato, S., Hric, D.: Community detection in networks: A user guide. Physics reports 659, 1–44 (2016) Zubaroğlu and Atalay [2021] Zubaroğlu, A., Atalay, V.: Data stream clustering: a review. Artificial Intelligence Review 54(2), 1201–1236 (2021) Rossetti and Cazabet [2018] Rossetti, G., Cazabet, R.: Community discovery in dynamic networks: a survey. ACM computing surveys (CSUR) 51(2), 1–37 (2018) Kisilevich et al. [2010] Kisilevich, S., Mansmann, F., Nanni, M., Rinzivillo, S.: Spatio-temporal clustering. Springer (2010) Ansari et al. [2020] Ansari, M.Y., Ahmad, A., Khan, S.S., Bhushan, G., Mainuddin: Spatiotemporal clustering: a review. Artificial Intelligence Review 53, 2381–2423 (2020) Palla et al. [2007] Palla, G., Barabási, A.-L., Vicsek, T.: Quantifying social group evolution. Nature 446(7136), 664–667 (2007) Lughofer [2012] Lughofer, E.: A dynamic split-and-merge approach for evolving cluster models. Evolving systems 3(3), 135–151 (2012) Bródka et al. [2013] Bródka, P., Saganowski, S., Kazienko, P.: Ged: the method for group evolution discovery in social networks. Social Network Analysis and Mining 3, 1–14 (2013) Greene et al. [2010] Greene, D., Doyle, D., Cunningham, P.: Tracking the evolution of communities in dynamic social networks. In: 2010 International Conference on Advances in Social Networks Analysis and Mining, pp. 176–183 (2010). IEEE Asur et al. [2009] Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Transactions on Knowledge Discovery from Data (TKDD) 3(4), 1–36 (2009) Brodka et al. [2009] Brodka, P., Musial, K., Kazienko, P.: A performance of centrality calculation in social networks. In: 2009 International Conference on Computational Aspects of Social Networks, pp. 24–31 (2009). IEEE Rosch [1975] Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Zubaroğlu, A., Atalay, V.: Data stream clustering: a review. Artificial Intelligence Review 54(2), 1201–1236 (2021) Rossetti and Cazabet [2018] Rossetti, G., Cazabet, R.: Community discovery in dynamic networks: a survey. ACM computing surveys (CSUR) 51(2), 1–37 (2018) Kisilevich et al. [2010] Kisilevich, S., Mansmann, F., Nanni, M., Rinzivillo, S.: Spatio-temporal clustering. Springer (2010) Ansari et al. [2020] Ansari, M.Y., Ahmad, A., Khan, S.S., Bhushan, G., Mainuddin: Spatiotemporal clustering: a review. Artificial Intelligence Review 53, 2381–2423 (2020) Palla et al. [2007] Palla, G., Barabási, A.-L., Vicsek, T.: Quantifying social group evolution. Nature 446(7136), 664–667 (2007) Lughofer [2012] Lughofer, E.: A dynamic split-and-merge approach for evolving cluster models. Evolving systems 3(3), 135–151 (2012) Bródka et al. [2013] Bródka, P., Saganowski, S., Kazienko, P.: Ged: the method for group evolution discovery in social networks. Social Network Analysis and Mining 3, 1–14 (2013) Greene et al. [2010] Greene, D., Doyle, D., Cunningham, P.: Tracking the evolution of communities in dynamic social networks. In: 2010 International Conference on Advances in Social Networks Analysis and Mining, pp. 176–183 (2010). IEEE Asur et al. [2009] Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Transactions on Knowledge Discovery from Data (TKDD) 3(4), 1–36 (2009) Brodka et al. [2009] Brodka, P., Musial, K., Kazienko, P.: A performance of centrality calculation in social networks. In: 2009 International Conference on Computational Aspects of Social Networks, pp. 24–31 (2009). IEEE Rosch [1975] Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Rossetti, G., Cazabet, R.: Community discovery in dynamic networks: a survey. ACM computing surveys (CSUR) 51(2), 1–37 (2018) Kisilevich et al. [2010] Kisilevich, S., Mansmann, F., Nanni, M., Rinzivillo, S.: Spatio-temporal clustering. Springer (2010) Ansari et al. [2020] Ansari, M.Y., Ahmad, A., Khan, S.S., Bhushan, G., Mainuddin: Spatiotemporal clustering: a review. Artificial Intelligence Review 53, 2381–2423 (2020) Palla et al. [2007] Palla, G., Barabási, A.-L., Vicsek, T.: Quantifying social group evolution. Nature 446(7136), 664–667 (2007) Lughofer [2012] Lughofer, E.: A dynamic split-and-merge approach for evolving cluster models. Evolving systems 3(3), 135–151 (2012) Bródka et al. [2013] Bródka, P., Saganowski, S., Kazienko, P.: Ged: the method for group evolution discovery in social networks. Social Network Analysis and Mining 3, 1–14 (2013) Greene et al. [2010] Greene, D., Doyle, D., Cunningham, P.: Tracking the evolution of communities in dynamic social networks. In: 2010 International Conference on Advances in Social Networks Analysis and Mining, pp. 176–183 (2010). IEEE Asur et al. [2009] Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Transactions on Knowledge Discovery from Data (TKDD) 3(4), 1–36 (2009) Brodka et al. [2009] Brodka, P., Musial, K., Kazienko, P.: A performance of centrality calculation in social networks. In: 2009 International Conference on Computational Aspects of Social Networks, pp. 24–31 (2009). IEEE Rosch [1975] Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Kisilevich, S., Mansmann, F., Nanni, M., Rinzivillo, S.: Spatio-temporal clustering. Springer (2010) Ansari et al. [2020] Ansari, M.Y., Ahmad, A., Khan, S.S., Bhushan, G., Mainuddin: Spatiotemporal clustering: a review. Artificial Intelligence Review 53, 2381–2423 (2020) Palla et al. [2007] Palla, G., Barabási, A.-L., Vicsek, T.: Quantifying social group evolution. Nature 446(7136), 664–667 (2007) Lughofer [2012] Lughofer, E.: A dynamic split-and-merge approach for evolving cluster models. Evolving systems 3(3), 135–151 (2012) Bródka et al. [2013] Bródka, P., Saganowski, S., Kazienko, P.: Ged: the method for group evolution discovery in social networks. Social Network Analysis and Mining 3, 1–14 (2013) Greene et al. [2010] Greene, D., Doyle, D., Cunningham, P.: Tracking the evolution of communities in dynamic social networks. In: 2010 International Conference on Advances in Social Networks Analysis and Mining, pp. 176–183 (2010). IEEE Asur et al. [2009] Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Transactions on Knowledge Discovery from Data (TKDD) 3(4), 1–36 (2009) Brodka et al. [2009] Brodka, P., Musial, K., Kazienko, P.: A performance of centrality calculation in social networks. In: 2009 International Conference on Computational Aspects of Social Networks, pp. 24–31 (2009). IEEE Rosch [1975] Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Ansari, M.Y., Ahmad, A., Khan, S.S., Bhushan, G., Mainuddin: Spatiotemporal clustering: a review. Artificial Intelligence Review 53, 2381–2423 (2020) Palla et al. [2007] Palla, G., Barabási, A.-L., Vicsek, T.: Quantifying social group evolution. Nature 446(7136), 664–667 (2007) Lughofer [2012] Lughofer, E.: A dynamic split-and-merge approach for evolving cluster models. Evolving systems 3(3), 135–151 (2012) Bródka et al. [2013] Bródka, P., Saganowski, S., Kazienko, P.: Ged: the method for group evolution discovery in social networks. Social Network Analysis and Mining 3, 1–14 (2013) Greene et al. [2010] Greene, D., Doyle, D., Cunningham, P.: Tracking the evolution of communities in dynamic social networks. In: 2010 International Conference on Advances in Social Networks Analysis and Mining, pp. 176–183 (2010). IEEE Asur et al. [2009] Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Transactions on Knowledge Discovery from Data (TKDD) 3(4), 1–36 (2009) Brodka et al. [2009] Brodka, P., Musial, K., Kazienko, P.: A performance of centrality calculation in social networks. In: 2009 International Conference on Computational Aspects of Social Networks, pp. 24–31 (2009). IEEE Rosch [1975] Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Palla, G., Barabási, A.-L., Vicsek, T.: Quantifying social group evolution. Nature 446(7136), 664–667 (2007) Lughofer [2012] Lughofer, E.: A dynamic split-and-merge approach for evolving cluster models. Evolving systems 3(3), 135–151 (2012) Bródka et al. [2013] Bródka, P., Saganowski, S., Kazienko, P.: Ged: the method for group evolution discovery in social networks. Social Network Analysis and Mining 3, 1–14 (2013) Greene et al. [2010] Greene, D., Doyle, D., Cunningham, P.: Tracking the evolution of communities in dynamic social networks. In: 2010 International Conference on Advances in Social Networks Analysis and Mining, pp. 176–183 (2010). IEEE Asur et al. [2009] Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Transactions on Knowledge Discovery from Data (TKDD) 3(4), 1–36 (2009) Brodka et al. [2009] Brodka, P., Musial, K., Kazienko, P.: A performance of centrality calculation in social networks. In: 2009 International Conference on Computational Aspects of Social Networks, pp. 24–31 (2009). IEEE Rosch [1975] Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Lughofer, E.: A dynamic split-and-merge approach for evolving cluster models. Evolving systems 3(3), 135–151 (2012) Bródka et al. [2013] Bródka, P., Saganowski, S., Kazienko, P.: Ged: the method for group evolution discovery in social networks. Social Network Analysis and Mining 3, 1–14 (2013) Greene et al. [2010] Greene, D., Doyle, D., Cunningham, P.: Tracking the evolution of communities in dynamic social networks. In: 2010 International Conference on Advances in Social Networks Analysis and Mining, pp. 176–183 (2010). IEEE Asur et al. [2009] Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Transactions on Knowledge Discovery from Data (TKDD) 3(4), 1–36 (2009) Brodka et al. [2009] Brodka, P., Musial, K., Kazienko, P.: A performance of centrality calculation in social networks. In: 2009 International Conference on Computational Aspects of Social Networks, pp. 24–31 (2009). IEEE Rosch [1975] Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Bródka, P., Saganowski, S., Kazienko, P.: Ged: the method for group evolution discovery in social networks. Social Network Analysis and Mining 3, 1–14 (2013) Greene et al. [2010] Greene, D., Doyle, D., Cunningham, P.: Tracking the evolution of communities in dynamic social networks. In: 2010 International Conference on Advances in Social Networks Analysis and Mining, pp. 176–183 (2010). IEEE Asur et al. [2009] Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Transactions on Knowledge Discovery from Data (TKDD) 3(4), 1–36 (2009) Brodka et al. [2009] Brodka, P., Musial, K., Kazienko, P.: A performance of centrality calculation in social networks. In: 2009 International Conference on Computational Aspects of Social Networks, pp. 24–31 (2009). IEEE Rosch [1975] Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Greene, D., Doyle, D., Cunningham, P.: Tracking the evolution of communities in dynamic social networks. In: 2010 International Conference on Advances in Social Networks Analysis and Mining, pp. 176–183 (2010). IEEE Asur et al. [2009] Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Transactions on Knowledge Discovery from Data (TKDD) 3(4), 1–36 (2009) Brodka et al. [2009] Brodka, P., Musial, K., Kazienko, P.: A performance of centrality calculation in social networks. In: 2009 International Conference on Computational Aspects of Social Networks, pp. 24–31 (2009). IEEE Rosch [1975] Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Transactions on Knowledge Discovery from Data (TKDD) 3(4), 1–36 (2009) Brodka et al. [2009] Brodka, P., Musial, K., Kazienko, P.: A performance of centrality calculation in social networks. In: 2009 International Conference on Computational Aspects of Social Networks, pp. 24–31 (2009). IEEE Rosch [1975] Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Brodka, P., Musial, K., Kazienko, P.: A performance of centrality calculation in social networks. In: 2009 International Conference on Computational Aspects of Social Networks, pp. 24–31 (2009). IEEE Rosch [1975] Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020)
  2. Zubaroğlu, A., Atalay, V.: Data stream clustering: a review. Artificial Intelligence Review 54(2), 1201–1236 (2021) Rossetti and Cazabet [2018] Rossetti, G., Cazabet, R.: Community discovery in dynamic networks: a survey. ACM computing surveys (CSUR) 51(2), 1–37 (2018) Kisilevich et al. [2010] Kisilevich, S., Mansmann, F., Nanni, M., Rinzivillo, S.: Spatio-temporal clustering. Springer (2010) Ansari et al. [2020] Ansari, M.Y., Ahmad, A., Khan, S.S., Bhushan, G., Mainuddin: Spatiotemporal clustering: a review. Artificial Intelligence Review 53, 2381–2423 (2020) Palla et al. [2007] Palla, G., Barabási, A.-L., Vicsek, T.: Quantifying social group evolution. Nature 446(7136), 664–667 (2007) Lughofer [2012] Lughofer, E.: A dynamic split-and-merge approach for evolving cluster models. Evolving systems 3(3), 135–151 (2012) Bródka et al. [2013] Bródka, P., Saganowski, S., Kazienko, P.: Ged: the method for group evolution discovery in social networks. Social Network Analysis and Mining 3, 1–14 (2013) Greene et al. [2010] Greene, D., Doyle, D., Cunningham, P.: Tracking the evolution of communities in dynamic social networks. In: 2010 International Conference on Advances in Social Networks Analysis and Mining, pp. 176–183 (2010). IEEE Asur et al. [2009] Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Transactions on Knowledge Discovery from Data (TKDD) 3(4), 1–36 (2009) Brodka et al. [2009] Brodka, P., Musial, K., Kazienko, P.: A performance of centrality calculation in social networks. In: 2009 International Conference on Computational Aspects of Social Networks, pp. 24–31 (2009). IEEE Rosch [1975] Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Rossetti, G., Cazabet, R.: Community discovery in dynamic networks: a survey. ACM computing surveys (CSUR) 51(2), 1–37 (2018) Kisilevich et al. [2010] Kisilevich, S., Mansmann, F., Nanni, M., Rinzivillo, S.: Spatio-temporal clustering. Springer (2010) Ansari et al. [2020] Ansari, M.Y., Ahmad, A., Khan, S.S., Bhushan, G., Mainuddin: Spatiotemporal clustering: a review. Artificial Intelligence Review 53, 2381–2423 (2020) Palla et al. [2007] Palla, G., Barabási, A.-L., Vicsek, T.: Quantifying social group evolution. Nature 446(7136), 664–667 (2007) Lughofer [2012] Lughofer, E.: A dynamic split-and-merge approach for evolving cluster models. Evolving systems 3(3), 135–151 (2012) Bródka et al. [2013] Bródka, P., Saganowski, S., Kazienko, P.: Ged: the method for group evolution discovery in social networks. Social Network Analysis and Mining 3, 1–14 (2013) Greene et al. [2010] Greene, D., Doyle, D., Cunningham, P.: Tracking the evolution of communities in dynamic social networks. In: 2010 International Conference on Advances in Social Networks Analysis and Mining, pp. 176–183 (2010). IEEE Asur et al. [2009] Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Transactions on Knowledge Discovery from Data (TKDD) 3(4), 1–36 (2009) Brodka et al. [2009] Brodka, P., Musial, K., Kazienko, P.: A performance of centrality calculation in social networks. In: 2009 International Conference on Computational Aspects of Social Networks, pp. 24–31 (2009). IEEE Rosch [1975] Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Kisilevich, S., Mansmann, F., Nanni, M., Rinzivillo, S.: Spatio-temporal clustering. Springer (2010) Ansari et al. [2020] Ansari, M.Y., Ahmad, A., Khan, S.S., Bhushan, G., Mainuddin: Spatiotemporal clustering: a review. Artificial Intelligence Review 53, 2381–2423 (2020) Palla et al. [2007] Palla, G., Barabási, A.-L., Vicsek, T.: Quantifying social group evolution. Nature 446(7136), 664–667 (2007) Lughofer [2012] Lughofer, E.: A dynamic split-and-merge approach for evolving cluster models. Evolving systems 3(3), 135–151 (2012) Bródka et al. [2013] Bródka, P., Saganowski, S., Kazienko, P.: Ged: the method for group evolution discovery in social networks. Social Network Analysis and Mining 3, 1–14 (2013) Greene et al. [2010] Greene, D., Doyle, D., Cunningham, P.: Tracking the evolution of communities in dynamic social networks. In: 2010 International Conference on Advances in Social Networks Analysis and Mining, pp. 176–183 (2010). IEEE Asur et al. [2009] Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Transactions on Knowledge Discovery from Data (TKDD) 3(4), 1–36 (2009) Brodka et al. [2009] Brodka, P., Musial, K., Kazienko, P.: A performance of centrality calculation in social networks. In: 2009 International Conference on Computational Aspects of Social Networks, pp. 24–31 (2009). IEEE Rosch [1975] Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Ansari, M.Y., Ahmad, A., Khan, S.S., Bhushan, G., Mainuddin: Spatiotemporal clustering: a review. Artificial Intelligence Review 53, 2381–2423 (2020) Palla et al. [2007] Palla, G., Barabási, A.-L., Vicsek, T.: Quantifying social group evolution. Nature 446(7136), 664–667 (2007) Lughofer [2012] Lughofer, E.: A dynamic split-and-merge approach for evolving cluster models. Evolving systems 3(3), 135–151 (2012) Bródka et al. [2013] Bródka, P., Saganowski, S., Kazienko, P.: Ged: the method for group evolution discovery in social networks. Social Network Analysis and Mining 3, 1–14 (2013) Greene et al. [2010] Greene, D., Doyle, D., Cunningham, P.: Tracking the evolution of communities in dynamic social networks. In: 2010 International Conference on Advances in Social Networks Analysis and Mining, pp. 176–183 (2010). IEEE Asur et al. [2009] Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Transactions on Knowledge Discovery from Data (TKDD) 3(4), 1–36 (2009) Brodka et al. [2009] Brodka, P., Musial, K., Kazienko, P.: A performance of centrality calculation in social networks. In: 2009 International Conference on Computational Aspects of Social Networks, pp. 24–31 (2009). IEEE Rosch [1975] Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Palla, G., Barabási, A.-L., Vicsek, T.: Quantifying social group evolution. Nature 446(7136), 664–667 (2007) Lughofer [2012] Lughofer, E.: A dynamic split-and-merge approach for evolving cluster models. Evolving systems 3(3), 135–151 (2012) Bródka et al. [2013] Bródka, P., Saganowski, S., Kazienko, P.: Ged: the method for group evolution discovery in social networks. Social Network Analysis and Mining 3, 1–14 (2013) Greene et al. [2010] Greene, D., Doyle, D., Cunningham, P.: Tracking the evolution of communities in dynamic social networks. In: 2010 International Conference on Advances in Social Networks Analysis and Mining, pp. 176–183 (2010). IEEE Asur et al. [2009] Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Transactions on Knowledge Discovery from Data (TKDD) 3(4), 1–36 (2009) Brodka et al. [2009] Brodka, P., Musial, K., Kazienko, P.: A performance of centrality calculation in social networks. In: 2009 International Conference on Computational Aspects of Social Networks, pp. 24–31 (2009). IEEE Rosch [1975] Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Lughofer, E.: A dynamic split-and-merge approach for evolving cluster models. Evolving systems 3(3), 135–151 (2012) Bródka et al. [2013] Bródka, P., Saganowski, S., Kazienko, P.: Ged: the method for group evolution discovery in social networks. Social Network Analysis and Mining 3, 1–14 (2013) Greene et al. [2010] Greene, D., Doyle, D., Cunningham, P.: Tracking the evolution of communities in dynamic social networks. In: 2010 International Conference on Advances in Social Networks Analysis and Mining, pp. 176–183 (2010). IEEE Asur et al. [2009] Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Transactions on Knowledge Discovery from Data (TKDD) 3(4), 1–36 (2009) Brodka et al. [2009] Brodka, P., Musial, K., Kazienko, P.: A performance of centrality calculation in social networks. In: 2009 International Conference on Computational Aspects of Social Networks, pp. 24–31 (2009). IEEE Rosch [1975] Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Bródka, P., Saganowski, S., Kazienko, P.: Ged: the method for group evolution discovery in social networks. Social Network Analysis and Mining 3, 1–14 (2013) Greene et al. [2010] Greene, D., Doyle, D., Cunningham, P.: Tracking the evolution of communities in dynamic social networks. In: 2010 International Conference on Advances in Social Networks Analysis and Mining, pp. 176–183 (2010). IEEE Asur et al. [2009] Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Transactions on Knowledge Discovery from Data (TKDD) 3(4), 1–36 (2009) Brodka et al. [2009] Brodka, P., Musial, K., Kazienko, P.: A performance of centrality calculation in social networks. In: 2009 International Conference on Computational Aspects of Social Networks, pp. 24–31 (2009). IEEE Rosch [1975] Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Greene, D., Doyle, D., Cunningham, P.: Tracking the evolution of communities in dynamic social networks. In: 2010 International Conference on Advances in Social Networks Analysis and Mining, pp. 176–183 (2010). IEEE Asur et al. [2009] Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Transactions on Knowledge Discovery from Data (TKDD) 3(4), 1–36 (2009) Brodka et al. [2009] Brodka, P., Musial, K., Kazienko, P.: A performance of centrality calculation in social networks. In: 2009 International Conference on Computational Aspects of Social Networks, pp. 24–31 (2009). IEEE Rosch [1975] Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Transactions on Knowledge Discovery from Data (TKDD) 3(4), 1–36 (2009) Brodka et al. [2009] Brodka, P., Musial, K., Kazienko, P.: A performance of centrality calculation in social networks. In: 2009 International Conference on Computational Aspects of Social Networks, pp. 24–31 (2009). IEEE Rosch [1975] Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Brodka, P., Musial, K., Kazienko, P.: A performance of centrality calculation in social networks. In: 2009 International Conference on Computational Aspects of Social Networks, pp. 24–31 (2009). IEEE Rosch [1975] Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020)
  3. Rossetti, G., Cazabet, R.: Community discovery in dynamic networks: a survey. ACM computing surveys (CSUR) 51(2), 1–37 (2018) Kisilevich et al. [2010] Kisilevich, S., Mansmann, F., Nanni, M., Rinzivillo, S.: Spatio-temporal clustering. Springer (2010) Ansari et al. [2020] Ansari, M.Y., Ahmad, A., Khan, S.S., Bhushan, G., Mainuddin: Spatiotemporal clustering: a review. Artificial Intelligence Review 53, 2381–2423 (2020) Palla et al. [2007] Palla, G., Barabási, A.-L., Vicsek, T.: Quantifying social group evolution. Nature 446(7136), 664–667 (2007) Lughofer [2012] Lughofer, E.: A dynamic split-and-merge approach for evolving cluster models. Evolving systems 3(3), 135–151 (2012) Bródka et al. [2013] Bródka, P., Saganowski, S., Kazienko, P.: Ged: the method for group evolution discovery in social networks. Social Network Analysis and Mining 3, 1–14 (2013) Greene et al. [2010] Greene, D., Doyle, D., Cunningham, P.: Tracking the evolution of communities in dynamic social networks. In: 2010 International Conference on Advances in Social Networks Analysis and Mining, pp. 176–183 (2010). IEEE Asur et al. [2009] Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Transactions on Knowledge Discovery from Data (TKDD) 3(4), 1–36 (2009) Brodka et al. [2009] Brodka, P., Musial, K., Kazienko, P.: A performance of centrality calculation in social networks. In: 2009 International Conference on Computational Aspects of Social Networks, pp. 24–31 (2009). IEEE Rosch [1975] Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Kisilevich, S., Mansmann, F., Nanni, M., Rinzivillo, S.: Spatio-temporal clustering. Springer (2010) Ansari et al. [2020] Ansari, M.Y., Ahmad, A., Khan, S.S., Bhushan, G., Mainuddin: Spatiotemporal clustering: a review. Artificial Intelligence Review 53, 2381–2423 (2020) Palla et al. [2007] Palla, G., Barabási, A.-L., Vicsek, T.: Quantifying social group evolution. Nature 446(7136), 664–667 (2007) Lughofer [2012] Lughofer, E.: A dynamic split-and-merge approach for evolving cluster models. Evolving systems 3(3), 135–151 (2012) Bródka et al. [2013] Bródka, P., Saganowski, S., Kazienko, P.: Ged: the method for group evolution discovery in social networks. Social Network Analysis and Mining 3, 1–14 (2013) Greene et al. [2010] Greene, D., Doyle, D., Cunningham, P.: Tracking the evolution of communities in dynamic social networks. In: 2010 International Conference on Advances in Social Networks Analysis and Mining, pp. 176–183 (2010). IEEE Asur et al. [2009] Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Transactions on Knowledge Discovery from Data (TKDD) 3(4), 1–36 (2009) Brodka et al. [2009] Brodka, P., Musial, K., Kazienko, P.: A performance of centrality calculation in social networks. In: 2009 International Conference on Computational Aspects of Social Networks, pp. 24–31 (2009). IEEE Rosch [1975] Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Ansari, M.Y., Ahmad, A., Khan, S.S., Bhushan, G., Mainuddin: Spatiotemporal clustering: a review. Artificial Intelligence Review 53, 2381–2423 (2020) Palla et al. [2007] Palla, G., Barabási, A.-L., Vicsek, T.: Quantifying social group evolution. Nature 446(7136), 664–667 (2007) Lughofer [2012] Lughofer, E.: A dynamic split-and-merge approach for evolving cluster models. Evolving systems 3(3), 135–151 (2012) Bródka et al. [2013] Bródka, P., Saganowski, S., Kazienko, P.: Ged: the method for group evolution discovery in social networks. Social Network Analysis and Mining 3, 1–14 (2013) Greene et al. [2010] Greene, D., Doyle, D., Cunningham, P.: Tracking the evolution of communities in dynamic social networks. In: 2010 International Conference on Advances in Social Networks Analysis and Mining, pp. 176–183 (2010). IEEE Asur et al. [2009] Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Transactions on Knowledge Discovery from Data (TKDD) 3(4), 1–36 (2009) Brodka et al. [2009] Brodka, P., Musial, K., Kazienko, P.: A performance of centrality calculation in social networks. In: 2009 International Conference on Computational Aspects of Social Networks, pp. 24–31 (2009). IEEE Rosch [1975] Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Palla, G., Barabási, A.-L., Vicsek, T.: Quantifying social group evolution. Nature 446(7136), 664–667 (2007) Lughofer [2012] Lughofer, E.: A dynamic split-and-merge approach for evolving cluster models. Evolving systems 3(3), 135–151 (2012) Bródka et al. [2013] Bródka, P., Saganowski, S., Kazienko, P.: Ged: the method for group evolution discovery in social networks. Social Network Analysis and Mining 3, 1–14 (2013) Greene et al. [2010] Greene, D., Doyle, D., Cunningham, P.: Tracking the evolution of communities in dynamic social networks. In: 2010 International Conference on Advances in Social Networks Analysis and Mining, pp. 176–183 (2010). IEEE Asur et al. [2009] Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Transactions on Knowledge Discovery from Data (TKDD) 3(4), 1–36 (2009) Brodka et al. [2009] Brodka, P., Musial, K., Kazienko, P.: A performance of centrality calculation in social networks. In: 2009 International Conference on Computational Aspects of Social Networks, pp. 24–31 (2009). IEEE Rosch [1975] Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Lughofer, E.: A dynamic split-and-merge approach for evolving cluster models. Evolving systems 3(3), 135–151 (2012) Bródka et al. [2013] Bródka, P., Saganowski, S., Kazienko, P.: Ged: the method for group evolution discovery in social networks. Social Network Analysis and Mining 3, 1–14 (2013) Greene et al. [2010] Greene, D., Doyle, D., Cunningham, P.: Tracking the evolution of communities in dynamic social networks. In: 2010 International Conference on Advances in Social Networks Analysis and Mining, pp. 176–183 (2010). IEEE Asur et al. [2009] Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Transactions on Knowledge Discovery from Data (TKDD) 3(4), 1–36 (2009) Brodka et al. [2009] Brodka, P., Musial, K., Kazienko, P.: A performance of centrality calculation in social networks. In: 2009 International Conference on Computational Aspects of Social Networks, pp. 24–31 (2009). IEEE Rosch [1975] Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Bródka, P., Saganowski, S., Kazienko, P.: Ged: the method for group evolution discovery in social networks. Social Network Analysis and Mining 3, 1–14 (2013) Greene et al. [2010] Greene, D., Doyle, D., Cunningham, P.: Tracking the evolution of communities in dynamic social networks. In: 2010 International Conference on Advances in Social Networks Analysis and Mining, pp. 176–183 (2010). IEEE Asur et al. [2009] Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Transactions on Knowledge Discovery from Data (TKDD) 3(4), 1–36 (2009) Brodka et al. [2009] Brodka, P., Musial, K., Kazienko, P.: A performance of centrality calculation in social networks. In: 2009 International Conference on Computational Aspects of Social Networks, pp. 24–31 (2009). IEEE Rosch [1975] Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Greene, D., Doyle, D., Cunningham, P.: Tracking the evolution of communities in dynamic social networks. In: 2010 International Conference on Advances in Social Networks Analysis and Mining, pp. 176–183 (2010). IEEE Asur et al. [2009] Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Transactions on Knowledge Discovery from Data (TKDD) 3(4), 1–36 (2009) Brodka et al. [2009] Brodka, P., Musial, K., Kazienko, P.: A performance of centrality calculation in social networks. In: 2009 International Conference on Computational Aspects of Social Networks, pp. 24–31 (2009). IEEE Rosch [1975] Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Transactions on Knowledge Discovery from Data (TKDD) 3(4), 1–36 (2009) Brodka et al. [2009] Brodka, P., Musial, K., Kazienko, P.: A performance of centrality calculation in social networks. In: 2009 International Conference on Computational Aspects of Social Networks, pp. 24–31 (2009). IEEE Rosch [1975] Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Brodka, P., Musial, K., Kazienko, P.: A performance of centrality calculation in social networks. In: 2009 International Conference on Computational Aspects of Social Networks, pp. 24–31 (2009). IEEE Rosch [1975] Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020)
  4. Kisilevich, S., Mansmann, F., Nanni, M., Rinzivillo, S.: Spatio-temporal clustering. Springer (2010) Ansari et al. [2020] Ansari, M.Y., Ahmad, A., Khan, S.S., Bhushan, G., Mainuddin: Spatiotemporal clustering: a review. Artificial Intelligence Review 53, 2381–2423 (2020) Palla et al. [2007] Palla, G., Barabási, A.-L., Vicsek, T.: Quantifying social group evolution. Nature 446(7136), 664–667 (2007) Lughofer [2012] Lughofer, E.: A dynamic split-and-merge approach for evolving cluster models. Evolving systems 3(3), 135–151 (2012) Bródka et al. [2013] Bródka, P., Saganowski, S., Kazienko, P.: Ged: the method for group evolution discovery in social networks. Social Network Analysis and Mining 3, 1–14 (2013) Greene et al. [2010] Greene, D., Doyle, D., Cunningham, P.: Tracking the evolution of communities in dynamic social networks. In: 2010 International Conference on Advances in Social Networks Analysis and Mining, pp. 176–183 (2010). IEEE Asur et al. [2009] Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Transactions on Knowledge Discovery from Data (TKDD) 3(4), 1–36 (2009) Brodka et al. [2009] Brodka, P., Musial, K., Kazienko, P.: A performance of centrality calculation in social networks. In: 2009 International Conference on Computational Aspects of Social Networks, pp. 24–31 (2009). IEEE Rosch [1975] Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Ansari, M.Y., Ahmad, A., Khan, S.S., Bhushan, G., Mainuddin: Spatiotemporal clustering: a review. Artificial Intelligence Review 53, 2381–2423 (2020) Palla et al. [2007] Palla, G., Barabási, A.-L., Vicsek, T.: Quantifying social group evolution. Nature 446(7136), 664–667 (2007) Lughofer [2012] Lughofer, E.: A dynamic split-and-merge approach for evolving cluster models. Evolving systems 3(3), 135–151 (2012) Bródka et al. [2013] Bródka, P., Saganowski, S., Kazienko, P.: Ged: the method for group evolution discovery in social networks. Social Network Analysis and Mining 3, 1–14 (2013) Greene et al. [2010] Greene, D., Doyle, D., Cunningham, P.: Tracking the evolution of communities in dynamic social networks. In: 2010 International Conference on Advances in Social Networks Analysis and Mining, pp. 176–183 (2010). IEEE Asur et al. [2009] Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Transactions on Knowledge Discovery from Data (TKDD) 3(4), 1–36 (2009) Brodka et al. [2009] Brodka, P., Musial, K., Kazienko, P.: A performance of centrality calculation in social networks. In: 2009 International Conference on Computational Aspects of Social Networks, pp. 24–31 (2009). IEEE Rosch [1975] Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Palla, G., Barabási, A.-L., Vicsek, T.: Quantifying social group evolution. Nature 446(7136), 664–667 (2007) Lughofer [2012] Lughofer, E.: A dynamic split-and-merge approach for evolving cluster models. Evolving systems 3(3), 135–151 (2012) Bródka et al. [2013] Bródka, P., Saganowski, S., Kazienko, P.: Ged: the method for group evolution discovery in social networks. Social Network Analysis and Mining 3, 1–14 (2013) Greene et al. [2010] Greene, D., Doyle, D., Cunningham, P.: Tracking the evolution of communities in dynamic social networks. In: 2010 International Conference on Advances in Social Networks Analysis and Mining, pp. 176–183 (2010). IEEE Asur et al. [2009] Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Transactions on Knowledge Discovery from Data (TKDD) 3(4), 1–36 (2009) Brodka et al. [2009] Brodka, P., Musial, K., Kazienko, P.: A performance of centrality calculation in social networks. In: 2009 International Conference on Computational Aspects of Social Networks, pp. 24–31 (2009). IEEE Rosch [1975] Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Lughofer, E.: A dynamic split-and-merge approach for evolving cluster models. Evolving systems 3(3), 135–151 (2012) Bródka et al. [2013] Bródka, P., Saganowski, S., Kazienko, P.: Ged: the method for group evolution discovery in social networks. Social Network Analysis and Mining 3, 1–14 (2013) Greene et al. [2010] Greene, D., Doyle, D., Cunningham, P.: Tracking the evolution of communities in dynamic social networks. In: 2010 International Conference on Advances in Social Networks Analysis and Mining, pp. 176–183 (2010). IEEE Asur et al. [2009] Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Transactions on Knowledge Discovery from Data (TKDD) 3(4), 1–36 (2009) Brodka et al. [2009] Brodka, P., Musial, K., Kazienko, P.: A performance of centrality calculation in social networks. In: 2009 International Conference on Computational Aspects of Social Networks, pp. 24–31 (2009). IEEE Rosch [1975] Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Bródka, P., Saganowski, S., Kazienko, P.: Ged: the method for group evolution discovery in social networks. Social Network Analysis and Mining 3, 1–14 (2013) Greene et al. [2010] Greene, D., Doyle, D., Cunningham, P.: Tracking the evolution of communities in dynamic social networks. In: 2010 International Conference on Advances in Social Networks Analysis and Mining, pp. 176–183 (2010). IEEE Asur et al. [2009] Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Transactions on Knowledge Discovery from Data (TKDD) 3(4), 1–36 (2009) Brodka et al. [2009] Brodka, P., Musial, K., Kazienko, P.: A performance of centrality calculation in social networks. In: 2009 International Conference on Computational Aspects of Social Networks, pp. 24–31 (2009). IEEE Rosch [1975] Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Greene, D., Doyle, D., Cunningham, P.: Tracking the evolution of communities in dynamic social networks. In: 2010 International Conference on Advances in Social Networks Analysis and Mining, pp. 176–183 (2010). IEEE Asur et al. [2009] Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Transactions on Knowledge Discovery from Data (TKDD) 3(4), 1–36 (2009) Brodka et al. [2009] Brodka, P., Musial, K., Kazienko, P.: A performance of centrality calculation in social networks. In: 2009 International Conference on Computational Aspects of Social Networks, pp. 24–31 (2009). IEEE Rosch [1975] Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Transactions on Knowledge Discovery from Data (TKDD) 3(4), 1–36 (2009) Brodka et al. [2009] Brodka, P., Musial, K., Kazienko, P.: A performance of centrality calculation in social networks. In: 2009 International Conference on Computational Aspects of Social Networks, pp. 24–31 (2009). IEEE Rosch [1975] Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Brodka, P., Musial, K., Kazienko, P.: A performance of centrality calculation in social networks. In: 2009 International Conference on Computational Aspects of Social Networks, pp. 24–31 (2009). IEEE Rosch [1975] Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020)
  5. Ansari, M.Y., Ahmad, A., Khan, S.S., Bhushan, G., Mainuddin: Spatiotemporal clustering: a review. Artificial Intelligence Review 53, 2381–2423 (2020) Palla et al. [2007] Palla, G., Barabási, A.-L., Vicsek, T.: Quantifying social group evolution. Nature 446(7136), 664–667 (2007) Lughofer [2012] Lughofer, E.: A dynamic split-and-merge approach for evolving cluster models. Evolving systems 3(3), 135–151 (2012) Bródka et al. [2013] Bródka, P., Saganowski, S., Kazienko, P.: Ged: the method for group evolution discovery in social networks. Social Network Analysis and Mining 3, 1–14 (2013) Greene et al. [2010] Greene, D., Doyle, D., Cunningham, P.: Tracking the evolution of communities in dynamic social networks. In: 2010 International Conference on Advances in Social Networks Analysis and Mining, pp. 176–183 (2010). IEEE Asur et al. [2009] Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Transactions on Knowledge Discovery from Data (TKDD) 3(4), 1–36 (2009) Brodka et al. [2009] Brodka, P., Musial, K., Kazienko, P.: A performance of centrality calculation in social networks. In: 2009 International Conference on Computational Aspects of Social Networks, pp. 24–31 (2009). IEEE Rosch [1975] Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Palla, G., Barabási, A.-L., Vicsek, T.: Quantifying social group evolution. Nature 446(7136), 664–667 (2007) Lughofer [2012] Lughofer, E.: A dynamic split-and-merge approach for evolving cluster models. Evolving systems 3(3), 135–151 (2012) Bródka et al. [2013] Bródka, P., Saganowski, S., Kazienko, P.: Ged: the method for group evolution discovery in social networks. Social Network Analysis and Mining 3, 1–14 (2013) Greene et al. [2010] Greene, D., Doyle, D., Cunningham, P.: Tracking the evolution of communities in dynamic social networks. In: 2010 International Conference on Advances in Social Networks Analysis and Mining, pp. 176–183 (2010). IEEE Asur et al. [2009] Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Transactions on Knowledge Discovery from Data (TKDD) 3(4), 1–36 (2009) Brodka et al. [2009] Brodka, P., Musial, K., Kazienko, P.: A performance of centrality calculation in social networks. In: 2009 International Conference on Computational Aspects of Social Networks, pp. 24–31 (2009). IEEE Rosch [1975] Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Lughofer, E.: A dynamic split-and-merge approach for evolving cluster models. Evolving systems 3(3), 135–151 (2012) Bródka et al. [2013] Bródka, P., Saganowski, S., Kazienko, P.: Ged: the method for group evolution discovery in social networks. Social Network Analysis and Mining 3, 1–14 (2013) Greene et al. [2010] Greene, D., Doyle, D., Cunningham, P.: Tracking the evolution of communities in dynamic social networks. In: 2010 International Conference on Advances in Social Networks Analysis and Mining, pp. 176–183 (2010). IEEE Asur et al. [2009] Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Transactions on Knowledge Discovery from Data (TKDD) 3(4), 1–36 (2009) Brodka et al. [2009] Brodka, P., Musial, K., Kazienko, P.: A performance of centrality calculation in social networks. In: 2009 International Conference on Computational Aspects of Social Networks, pp. 24–31 (2009). IEEE Rosch [1975] Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Bródka, P., Saganowski, S., Kazienko, P.: Ged: the method for group evolution discovery in social networks. Social Network Analysis and Mining 3, 1–14 (2013) Greene et al. [2010] Greene, D., Doyle, D., Cunningham, P.: Tracking the evolution of communities in dynamic social networks. In: 2010 International Conference on Advances in Social Networks Analysis and Mining, pp. 176–183 (2010). IEEE Asur et al. [2009] Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Transactions on Knowledge Discovery from Data (TKDD) 3(4), 1–36 (2009) Brodka et al. [2009] Brodka, P., Musial, K., Kazienko, P.: A performance of centrality calculation in social networks. In: 2009 International Conference on Computational Aspects of Social Networks, pp. 24–31 (2009). IEEE Rosch [1975] Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Greene, D., Doyle, D., Cunningham, P.: Tracking the evolution of communities in dynamic social networks. In: 2010 International Conference on Advances in Social Networks Analysis and Mining, pp. 176–183 (2010). IEEE Asur et al. [2009] Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Transactions on Knowledge Discovery from Data (TKDD) 3(4), 1–36 (2009) Brodka et al. [2009] Brodka, P., Musial, K., Kazienko, P.: A performance of centrality calculation in social networks. In: 2009 International Conference on Computational Aspects of Social Networks, pp. 24–31 (2009). IEEE Rosch [1975] Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Transactions on Knowledge Discovery from Data (TKDD) 3(4), 1–36 (2009) Brodka et al. [2009] Brodka, P., Musial, K., Kazienko, P.: A performance of centrality calculation in social networks. In: 2009 International Conference on Computational Aspects of Social Networks, pp. 24–31 (2009). IEEE Rosch [1975] Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Brodka, P., Musial, K., Kazienko, P.: A performance of centrality calculation in social networks. In: 2009 International Conference on Computational Aspects of Social Networks, pp. 24–31 (2009). IEEE Rosch [1975] Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020)
  6. Palla, G., Barabási, A.-L., Vicsek, T.: Quantifying social group evolution. Nature 446(7136), 664–667 (2007) Lughofer [2012] Lughofer, E.: A dynamic split-and-merge approach for evolving cluster models. Evolving systems 3(3), 135–151 (2012) Bródka et al. [2013] Bródka, P., Saganowski, S., Kazienko, P.: Ged: the method for group evolution discovery in social networks. Social Network Analysis and Mining 3, 1–14 (2013) Greene et al. [2010] Greene, D., Doyle, D., Cunningham, P.: Tracking the evolution of communities in dynamic social networks. In: 2010 International Conference on Advances in Social Networks Analysis and Mining, pp. 176–183 (2010). IEEE Asur et al. [2009] Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Transactions on Knowledge Discovery from Data (TKDD) 3(4), 1–36 (2009) Brodka et al. [2009] Brodka, P., Musial, K., Kazienko, P.: A performance of centrality calculation in social networks. In: 2009 International Conference on Computational Aspects of Social Networks, pp. 24–31 (2009). IEEE Rosch [1975] Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Lughofer, E.: A dynamic split-and-merge approach for evolving cluster models. Evolving systems 3(3), 135–151 (2012) Bródka et al. [2013] Bródka, P., Saganowski, S., Kazienko, P.: Ged: the method for group evolution discovery in social networks. Social Network Analysis and Mining 3, 1–14 (2013) Greene et al. [2010] Greene, D., Doyle, D., Cunningham, P.: Tracking the evolution of communities in dynamic social networks. In: 2010 International Conference on Advances in Social Networks Analysis and Mining, pp. 176–183 (2010). IEEE Asur et al. [2009] Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Transactions on Knowledge Discovery from Data (TKDD) 3(4), 1–36 (2009) Brodka et al. [2009] Brodka, P., Musial, K., Kazienko, P.: A performance of centrality calculation in social networks. In: 2009 International Conference on Computational Aspects of Social Networks, pp. 24–31 (2009). IEEE Rosch [1975] Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Bródka, P., Saganowski, S., Kazienko, P.: Ged: the method for group evolution discovery in social networks. Social Network Analysis and Mining 3, 1–14 (2013) Greene et al. [2010] Greene, D., Doyle, D., Cunningham, P.: Tracking the evolution of communities in dynamic social networks. In: 2010 International Conference on Advances in Social Networks Analysis and Mining, pp. 176–183 (2010). IEEE Asur et al. [2009] Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Transactions on Knowledge Discovery from Data (TKDD) 3(4), 1–36 (2009) Brodka et al. [2009] Brodka, P., Musial, K., Kazienko, P.: A performance of centrality calculation in social networks. In: 2009 International Conference on Computational Aspects of Social Networks, pp. 24–31 (2009). IEEE Rosch [1975] Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Greene, D., Doyle, D., Cunningham, P.: Tracking the evolution of communities in dynamic social networks. In: 2010 International Conference on Advances in Social Networks Analysis and Mining, pp. 176–183 (2010). IEEE Asur et al. [2009] Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Transactions on Knowledge Discovery from Data (TKDD) 3(4), 1–36 (2009) Brodka et al. [2009] Brodka, P., Musial, K., Kazienko, P.: A performance of centrality calculation in social networks. In: 2009 International Conference on Computational Aspects of Social Networks, pp. 24–31 (2009). IEEE Rosch [1975] Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Transactions on Knowledge Discovery from Data (TKDD) 3(4), 1–36 (2009) Brodka et al. [2009] Brodka, P., Musial, K., Kazienko, P.: A performance of centrality calculation in social networks. In: 2009 International Conference on Computational Aspects of Social Networks, pp. 24–31 (2009). IEEE Rosch [1975] Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Brodka, P., Musial, K., Kazienko, P.: A performance of centrality calculation in social networks. In: 2009 International Conference on Computational Aspects of Social Networks, pp. 24–31 (2009). IEEE Rosch [1975] Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020)
  7. Lughofer, E.: A dynamic split-and-merge approach for evolving cluster models. Evolving systems 3(3), 135–151 (2012) Bródka et al. [2013] Bródka, P., Saganowski, S., Kazienko, P.: Ged: the method for group evolution discovery in social networks. Social Network Analysis and Mining 3, 1–14 (2013) Greene et al. [2010] Greene, D., Doyle, D., Cunningham, P.: Tracking the evolution of communities in dynamic social networks. In: 2010 International Conference on Advances in Social Networks Analysis and Mining, pp. 176–183 (2010). IEEE Asur et al. [2009] Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Transactions on Knowledge Discovery from Data (TKDD) 3(4), 1–36 (2009) Brodka et al. [2009] Brodka, P., Musial, K., Kazienko, P.: A performance of centrality calculation in social networks. In: 2009 International Conference on Computational Aspects of Social Networks, pp. 24–31 (2009). IEEE Rosch [1975] Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Bródka, P., Saganowski, S., Kazienko, P.: Ged: the method for group evolution discovery in social networks. Social Network Analysis and Mining 3, 1–14 (2013) Greene et al. [2010] Greene, D., Doyle, D., Cunningham, P.: Tracking the evolution of communities in dynamic social networks. In: 2010 International Conference on Advances in Social Networks Analysis and Mining, pp. 176–183 (2010). IEEE Asur et al. [2009] Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Transactions on Knowledge Discovery from Data (TKDD) 3(4), 1–36 (2009) Brodka et al. [2009] Brodka, P., Musial, K., Kazienko, P.: A performance of centrality calculation in social networks. In: 2009 International Conference on Computational Aspects of Social Networks, pp. 24–31 (2009). IEEE Rosch [1975] Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Greene, D., Doyle, D., Cunningham, P.: Tracking the evolution of communities in dynamic social networks. In: 2010 International Conference on Advances in Social Networks Analysis and Mining, pp. 176–183 (2010). IEEE Asur et al. [2009] Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Transactions on Knowledge Discovery from Data (TKDD) 3(4), 1–36 (2009) Brodka et al. [2009] Brodka, P., Musial, K., Kazienko, P.: A performance of centrality calculation in social networks. In: 2009 International Conference on Computational Aspects of Social Networks, pp. 24–31 (2009). IEEE Rosch [1975] Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Transactions on Knowledge Discovery from Data (TKDD) 3(4), 1–36 (2009) Brodka et al. [2009] Brodka, P., Musial, K., Kazienko, P.: A performance of centrality calculation in social networks. In: 2009 International Conference on Computational Aspects of Social Networks, pp. 24–31 (2009). IEEE Rosch [1975] Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Brodka, P., Musial, K., Kazienko, P.: A performance of centrality calculation in social networks. In: 2009 International Conference on Computational Aspects of Social Networks, pp. 24–31 (2009). IEEE Rosch [1975] Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020)
  8. Bródka, P., Saganowski, S., Kazienko, P.: Ged: the method for group evolution discovery in social networks. Social Network Analysis and Mining 3, 1–14 (2013) Greene et al. [2010] Greene, D., Doyle, D., Cunningham, P.: Tracking the evolution of communities in dynamic social networks. In: 2010 International Conference on Advances in Social Networks Analysis and Mining, pp. 176–183 (2010). IEEE Asur et al. [2009] Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Transactions on Knowledge Discovery from Data (TKDD) 3(4), 1–36 (2009) Brodka et al. [2009] Brodka, P., Musial, K., Kazienko, P.: A performance of centrality calculation in social networks. In: 2009 International Conference on Computational Aspects of Social Networks, pp. 24–31 (2009). IEEE Rosch [1975] Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Greene, D., Doyle, D., Cunningham, P.: Tracking the evolution of communities in dynamic social networks. In: 2010 International Conference on Advances in Social Networks Analysis and Mining, pp. 176–183 (2010). IEEE Asur et al. [2009] Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Transactions on Knowledge Discovery from Data (TKDD) 3(4), 1–36 (2009) Brodka et al. [2009] Brodka, P., Musial, K., Kazienko, P.: A performance of centrality calculation in social networks. In: 2009 International Conference on Computational Aspects of Social Networks, pp. 24–31 (2009). IEEE Rosch [1975] Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Transactions on Knowledge Discovery from Data (TKDD) 3(4), 1–36 (2009) Brodka et al. [2009] Brodka, P., Musial, K., Kazienko, P.: A performance of centrality calculation in social networks. In: 2009 International Conference on Computational Aspects of Social Networks, pp. 24–31 (2009). IEEE Rosch [1975] Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Brodka, P., Musial, K., Kazienko, P.: A performance of centrality calculation in social networks. In: 2009 International Conference on Computational Aspects of Social Networks, pp. 24–31 (2009). IEEE Rosch [1975] Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020)
  9. Greene, D., Doyle, D., Cunningham, P.: Tracking the evolution of communities in dynamic social networks. In: 2010 International Conference on Advances in Social Networks Analysis and Mining, pp. 176–183 (2010). IEEE Asur et al. [2009] Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Transactions on Knowledge Discovery from Data (TKDD) 3(4), 1–36 (2009) Brodka et al. [2009] Brodka, P., Musial, K., Kazienko, P.: A performance of centrality calculation in social networks. In: 2009 International Conference on Computational Aspects of Social Networks, pp. 24–31 (2009). IEEE Rosch [1975] Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Transactions on Knowledge Discovery from Data (TKDD) 3(4), 1–36 (2009) Brodka et al. [2009] Brodka, P., Musial, K., Kazienko, P.: A performance of centrality calculation in social networks. In: 2009 International Conference on Computational Aspects of Social Networks, pp. 24–31 (2009). IEEE Rosch [1975] Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Brodka, P., Musial, K., Kazienko, P.: A performance of centrality calculation in social networks. In: 2009 International Conference on Computational Aspects of Social Networks, pp. 24–31 (2009). IEEE Rosch [1975] Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020)
  10. Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Transactions on Knowledge Discovery from Data (TKDD) 3(4), 1–36 (2009) Brodka et al. [2009] Brodka, P., Musial, K., Kazienko, P.: A performance of centrality calculation in social networks. In: 2009 International Conference on Computational Aspects of Social Networks, pp. 24–31 (2009). IEEE Rosch [1975] Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Brodka, P., Musial, K., Kazienko, P.: A performance of centrality calculation in social networks. In: 2009 International Conference on Computational Aspects of Social Networks, pp. 24–31 (2009). IEEE Rosch [1975] Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020)
  11. Brodka, P., Musial, K., Kazienko, P.: A performance of centrality calculation in social networks. In: 2009 International Conference on Computational Aspects of Social Networks, pp. 24–31 (2009). IEEE Rosch [1975] Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020)
  12. Rosch, E.: Cognitive representations of semantic categories. Journal of experimental psychology: General 104(3), 192 (1975) Bovet et al. [2022] Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020)
  13. Bovet, A., Delvenne, J.-C., Lambiotte, R.: Flow stability for dynamic community detection. Science advances 8(19), 3063 (2022) Kalnis et al. [2005] Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020)
  14. Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra Dos Reis, Brazil, August 22-24, 2005. Proceedings 9, pp. 364–381 (2005). Springer Hopcroft et al. [2004] Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020)
  15. Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences 101(suppl_1), 5249–5253 (2004) Gliwa et al. [2012] Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020)
  16. Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1201–1206 (2012). IEEE Saganowski [2015] Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020)
  17. Saganowski, S.: Predicting community evolution in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 924–925 (2015) İlhan and Öğüdücü [2015] İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020)
  18. İlhan, N., Öğüdücü, Ş.G.: Predicting community evolution based on time series modeling. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 1509–1516 (2015) Tsoukanara et al. [2021] Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020)
  19. Tsoukanara, E., Koloniari, G., Pitoura, E.: Should i stay or should i go: Predicting changes in cluster membership. In: Web and Big Data. APWeb-WAIM 2021 International Workshops: KGMA 2021, SemiBDMA 2021, DeepLUDA 2021, Guangzhou, China, August 23–25, 2021, Revised Selected Papers 5, pp. 3–15 (2021). Springer Cazabet et al. [2018] Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020)
  20. Cazabet, R., Rossetti, G., Amblard, F.: In: Alhajj, R., Rokne, J. (eds.) Dynamic Community Detection, pp. 669–678. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-7131-2_383 . https://doi.org/10.1007/978-1-4939-7131-2_383 Morales et al. [2021] Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020)
  21. Morales, P.R., Lamarche-Perrin, R., Fournier-S’Niehotta, R., Poulain, R., Tabourier, L., Tarissan, F.: Measuring diversity in heterogeneous information networks. Theoretical computer science 859, 80–115 (2021) Vanhems et al. [2013] Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020)
  22. Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B.-a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), 73970 (2013) Stehlé et al. [2011] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020)
  23. Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), 23176 (2011) Mastrandrea et al. [2015] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020)
  24. Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9), 0136497 (2015) Blondel et al. [2008] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020)
  25. Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008) Cazabet [2021] Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020)
  26. Cazabet, R.: Data compression to choose a proper dynamic network representation. In: Complex Networks & Their Applications IX: Volume 1, Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2020, pp. 522–532 (2021). Springer Cazabet et al. [2020] Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020) Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020)
  27. Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algorithms for progressively evolving graphs. Journal of Complex Networks 8(6), 027 (2020)
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.