Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Guiding Clinical Reasoning with Large Language Models via Knowledge Seeds (2403.06609v2)

Published 11 Mar 2024 in cs.CL and cs.AI

Abstract: Clinical reasoning refers to the cognitive process that physicians employ in evaluating and managing patients. This process typically involves suggesting necessary examinations, diagnosing patients' diseases, and deciding on appropriate therapies, etc. Accurate clinical reasoning requires extensive medical knowledge and rich clinical experience, setting a high bar for physicians. This is particularly challenging in developing countries due to the overwhelming number of patients and limited physician resources, contributing significantly to global health inequity and necessitating automated clinical reasoning approaches. Recently, the emergence of LLMs such as ChatGPT and GPT-4 have demonstrated their potential in clinical reasoning. However, these LLMs are prone to hallucination problems, and the reasoning process of LLMs may not align with the clinical decision path of physicians. In this study, we introduce a novel framework, In-Context Padding (ICP), designed to enhance LLMs with medical knowledge. Specifically, we infer critical clinical reasoning elements (referred to as knowledge seeds) and use these as anchors to guide the generation process of LLMs. Experiments on two clinical question datasets demonstrate that ICP significantly improves the clinical reasoning ability of LLMs.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Xian Wu (139 papers)
  2. Jie Yang (516 papers)
  3. Jiageng Wu (16 papers)
Citations (4)