Towards verifications of Krylov complexity (2403.06391v2)
Abstract: Krylov complexity is considered to provide a measure of the growth of operators evolving under Hamiltonian dynamics. The main strategy is the analysis of the structure of Krylov subspace $\mathcal{K}_M(\mathcal{H},\eta)$ spanned by the multiple applications of the Liouville operator $\mathcal{L}$ defined by the commutator in terms of a Hamiltonian $\mathcal{H}$, $\mathcal{L}:=[\mathcal{H},\cdot]$ acting on an operator $\eta$, $\mathcal{K}_M(\mathcal{H},\eta)=\text{span}{\eta,\mathcal{L}\eta,\ldots,\mathcal{L}{M-1}\eta}$. For a given inner product $(\cdot,\cdot)$ of the operators, the orthonormal basis ${\mathcal{O}_n}$ is constructed from $\mathcal{O}_0=\eta/\sqrt{(\eta,\eta)}$ by Lanczos algorithm. The moments $\mu_m=(\mathcal{O}_0,\mathcal{L}m\mathcal{O}_0)$ are closely related to the important data ${b_n}$ called Lanczos coefficients. I present the exact and explicit expressions of the moments ${\mu_m}$ for 16 quantum mechanical systems which are {\em exactly solvable both in the Schr\"odinger and Heisenberg pictures}. The operator $\eta$ is the variable of the eigenpolynomials. Among them six systems show a clear sign of `non-complexity' as vanishing higher Lanczos coefficients $b_m=0$, $m\ge3$.
- D. E. Parker, X. Cao, A. Avdoshkin, T. Scaffidi and E. Altman, “A Universal Operator Growth Hypothesis,” Phys. Rev. X9 (2019) 041017 arXiv:1812.08657v5[cond-mat.stat-mech].
- J. L. F. Barbón, E. Rabinovici, R. Shir and R. Sinha, “On The Evolution Of Operator Complexity Beyond Scrambling,” JHEP 10 (2019) 264 arXiv:1907.05393[hep-th].
- A. Dymarsky and A. Gorsky, “Quantum chaos as delocalization in Krylov space,” Physical Review B 102 (2020) 085137, arXov:1912.12227[cond-mat].
- E. Rabinovici, A. Sánchez-Garrido, R. Shir and J. Sonner, “Operator complexity: a journey to the edge of Krylov space,” JHEP 06 (2021) 062 arXiv:2009.01862[hep-th].
- P. Caputa, J. M. Magan and D. Patramanis, “Geometry of Krylov Complexity,” Phys. Rev. Research 4 (2022) 013041, arXiv:2109.03824v2[hep-th].
- W. Mück and Y. Yang, “Krylov complexity and orthogonal polynomials,” Nucl. Phys. B984 (2022) 115948, arXiv:2205.12815[hep-th].
- A. Kitaev, “A simple model of quantum holography,” (2015).
- S. Sachdev and J. Ye, “Gapless spin fluid ground state in a random, quantum Heisenberg ferromagnet,” Phys. Rev. Lett. 70 (1993) 3339, arXiv:cond-mat/9212030.
- A. N. Krylov, “On the numerical solution of the equation by which in technical questions frequencies of small oscillations of material systems are determined,” Izvestija AN SSSR (1931) VII, Nr.4, 491-539 (in Russian).
- C. Lanczos, “An iteration method for the solution of the eigenvalue problem of linear differential and integral operators,” J. Res. Natl. Bur. Stand. 45 (1950) 255.
- S. Odake and R. Sasaki, “Orthogonal Polynomials from Hermitian Matrices,” J. Math. Phys. 49 (2008) 053503 (43 pp), arXiv:0712.4106[math.CA].
- S. Odake and R. Sasaki, “ Exact solution in the Heisenberg picture and annihilation-creation operators,” Phys. Lett. B641 (2006) 112–117, arXiv:quant-ph/0605221.
- S. Odake and R. Sasaki, “Unified Theory of Annihilation-Creation Operators for Solvable (‘Discrete’) Quantum Mechanics,” J. Math. Phys. 47 (2006) 102102, 33pages, arXiv:quant-ph/0605215.
- V. S. Viswanath and G. Müller, “The Recursion Method: Applications to Many-body Dynamics,” Springer, (2008).
- S. Odake and R. Sasaki, “Discrete quantum mechanics,” (Topical Review) J. Phys. A44 (2011) 353001 (47 pp), arXiv:1104.0473[math-ph].
- M. M. Nieto and L. M. Simmons, Jr., “Coherent States For General Potentials,” Phys. Rev. Lett. 41 (1978) 207-210; “Coherent States For General Potentials,” 1. Formalism, Phys. Rev. D 20 (1979) 1321-1331; 2. Confining One-Dimensional Examples, Phys. Rev. D 20 (1979) 1332-1341; 3. Nonconfining One-Dimensional Examples, Phys. Rev. D 20 (1979) 1342-1350.
- S. Odake and R. Sasaki, “Exactly solvable ‘discrete’ quantum mechanics; shape invariance, Heisenberg solutions, annihilation-creation operators and coherent states,” Prog. Theor. Phys. 119 (2008) 663-700, arXiv:0802.1075[quant-ph].
- S. Odake and R. Sasaki, “Exact Heisenberg operator solutions for multi-particle quantum mechanics,” J. Math. Phys. 48 (2007) 082106, (12 pp), arXiv:0706.0768v1 [quant-ph].
- R. Sasaki, “Multivariate Kawtchouk polynomials as Birth and Death polynomials,” 2305.08581v2[math.CA]; “Multivariate Meixner polynomials as Birth and Death polynomials,” arXiv:2310.04968[math.CA]; “Rahman polynomials,” arXiv:2310.17853v2[math.PR].