Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
Gemini 2.5 Pro Premium
52 tokens/sec
GPT-5 Medium
24 tokens/sec
GPT-5 High Premium
28 tokens/sec
GPT-4o
85 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
478 tokens/sec
Kimi K2 via Groq Premium
221 tokens/sec
2000 character limit reached

Towards verifications of Krylov complexity (2403.06391v2)

Published 11 Mar 2024 in quant-ph, hep-th, math-ph, and math.MP

Abstract: Krylov complexity is considered to provide a measure of the growth of operators evolving under Hamiltonian dynamics. The main strategy is the analysis of the structure of Krylov subspace $\mathcal{K}_M(\mathcal{H},\eta)$ spanned by the multiple applications of the Liouville operator $\mathcal{L}$ defined by the commutator in terms of a Hamiltonian $\mathcal{H}$, $\mathcal{L}:=[\mathcal{H},\cdot]$ acting on an operator $\eta$, $\mathcal{K}_M(\mathcal{H},\eta)=\text{span}{\eta,\mathcal{L}\eta,\ldots,\mathcal{L}{M-1}\eta}$. For a given inner product $(\cdot,\cdot)$ of the operators, the orthonormal basis ${\mathcal{O}_n}$ is constructed from $\mathcal{O}_0=\eta/\sqrt{(\eta,\eta)}$ by Lanczos algorithm. The moments $\mu_m=(\mathcal{O}_0,\mathcal{L}m\mathcal{O}_0)$ are closely related to the important data ${b_n}$ called Lanczos coefficients. I present the exact and explicit expressions of the moments ${\mu_m}$ for 16 quantum mechanical systems which are {\em exactly solvable both in the Schr\"odinger and Heisenberg pictures}. The operator $\eta$ is the variable of the eigenpolynomials. Among them six systems show a clear sign of `non-complexity' as vanishing higher Lanczos coefficients $b_m=0$, $m\ge3$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. D. E. Parker, X. Cao, A. Avdoshkin, T. Scaffidi and E. Altman, “A Universal Operator Growth Hypothesis,” Phys. Rev. X9 (2019) 041017 arXiv:1812.08657v5[cond-mat.stat-mech].
  2. J. L. F. Barbón, E. Rabinovici, R. Shir and R. Sinha, “On The Evolution Of Operator Complexity Beyond Scrambling,” JHEP 10 (2019) 264 arXiv:1907.05393[hep-th].
  3. A. Dymarsky and A.  Gorsky, “Quantum chaos as delocalization in Krylov space,” Physical Review B 102 (2020) 085137, arXov:1912.12227[cond-mat].
  4. E. Rabinovici, A. Sánchez-Garrido, R. Shir and J. Sonner, “Operator complexity: a journey to the edge of Krylov space,” JHEP 06 (2021) 062 arXiv:2009.01862[hep-th].
  5. P.  Caputa, J.  M.  Magan and D.  Patramanis, “Geometry of Krylov Complexity,” Phys. Rev. Research 4 (2022) 013041, arXiv:2109.03824v2[hep-th].
  6. W. Mück and Y.  Yang, “Krylov complexity and orthogonal polynomials,” Nucl. Phys. B984 (2022) 115948, arXiv:2205.12815[hep-th].
  7. A. Kitaev, “A simple model of quantum holography,” (2015).
  8. S.  Sachdev and J. Ye, “Gapless spin fluid ground state in a random, quantum Heisenberg ferromagnet,” Phys. Rev. Lett. 70 (1993) 3339, arXiv:cond-mat/9212030.
  9. A. N. Krylov, “On the numerical solution of the equation by which in technical questions frequencies of small oscillations of material systems are determined,” Izvestija AN SSSR (1931) VII, Nr.4, 491-539 (in Russian).
  10. C.  Lanczos, “An iteration method for the solution of the eigenvalue problem of linear differential and integral operators,” J. Res. Natl. Bur. Stand. 45 (1950) 255.
  11. S.  Odake and R.  Sasaki, “Orthogonal Polynomials from Hermitian Matrices,” J. Math. Phys. 49 (2008) 053503 (43 pp), arXiv:0712.4106[math.CA].
  12. S.  Odake and R.  Sasaki, “ Exact solution in the Heisenberg picture and annihilation-creation operators,” Phys. Lett. B641 (2006) 112–117, arXiv:quant-ph/0605221.
  13. S.  Odake and R.  Sasaki, “Unified Theory of Annihilation-Creation Operators for Solvable (‘Discrete’) Quantum Mechanics,” J. Math. Phys. 47 (2006) 102102, 33pages, arXiv:quant-ph/0605215.
  14. V. S.  Viswanath and G.  Müller, “The Recursion Method: Applications to Many-body Dynamics,” Springer, (2008).
  15. S.  Odake and R.  Sasaki, “Discrete quantum mechanics,” (Topical Review) J. Phys. A44 (2011) 353001 (47 pp), arXiv:1104.0473[math-ph].
  16. M.  M.  Nieto and L. M.  Simmons, Jr., “Coherent States For General Potentials,” Phys. Rev. Lett. 41 (1978) 207-210; “Coherent States For General Potentials,” 1. Formalism, Phys. Rev. D 20 (1979) 1321-1331; 2. Confining One-Dimensional Examples, Phys. Rev. D 20 (1979) 1332-1341; 3. Nonconfining One-Dimensional Examples, Phys. Rev. D 20 (1979) 1342-1350.
  17. S.  Odake and R.  Sasaki, “Exactly solvable ‘discrete’ quantum mechanics; shape invariance, Heisenberg solutions, annihilation-creation operators and coherent states,” Prog. Theor. Phys. 119 (2008) 663-700, arXiv:0802.1075[quant-ph].
  18. S.  Odake and R.  Sasaki, “Exact Heisenberg operator solutions for multi-particle quantum mechanics,” J. Math. Phys. 48 (2007) 082106, (12 pp), arXiv:0706.0768v1 [quant-ph].
  19. R.  Sasaki, “Multivariate Kawtchouk polynomials as Birth and Death polynomials,” 2305.08581v2[math.CA]; “Multivariate Meixner polynomials as Birth and Death polynomials,” arXiv:2310.04968[math.CA]; “Rahman polynomials,” arXiv:2310.17853v2[math.PR].
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com