Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Error-Mitigated Quantum Random Access Memory (2403.06340v2)

Published 10 Mar 2024 in quant-ph

Abstract: As an alternative to quantum error correction, quantum error mitigation methods, including Zero-Noise Extrapolation (ZNE), have been proposed to alleviate run-time errors in current noisy quantum devices. In this work, we propose a modified version of ZNE that provides for a significant performance enhancement on current noisy devices. Our modified ZNE method extrapolates to zero-noise data by evaluating groups of noisy data obtained from noise-scaled circuits and selecting extrapolation functions for each group with the assistance of estimated noisy simulation results. To quantify enhancement in a real-world quantum application, we embed our modified ZNE in Quantum Random Access Memory (QRAM) - a memory system important for future quantum networks and computers. Our new ZNE-enhanced QRAM designs are experimentally implemented on a 27-qubit noisy superconducting quantum device, the results of which demonstrate QRAM fidelity can be improved significantly relative to traditional ZNE usage. Our results demonstrate the critical role the extrapolation function plays in ZNE - judicious choice of that function on a per-measurement basis can make the difference between a quantum application being functional or non-functional.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. J. Preskill, “Quantum Computing in the NISQ era and beyond,” Quantum, vol. 2, 79, 2018.
  2. P. Czarnik, A. Arrasmith, P. J. Coles, and L. Cincio, “Error mitigation with Clifford quantum-circuit data,” Quantum, vol. 5, 592, 2021.
  3. D. Qin, X. Xu, and Y. Li, “An overview of quantum error mitigation formulas,” Chinese Physics B, vol. 31, no. 9, 090306, 2022.
  4. C. J. Wood, “Special session: Noise characterization and error mitigation in near-term quantum computers,” in 2020 IEEE 38th International Conference on Computer Design (ICCD), 2020, pp. 13–16.
  5. E. Wilson, S. Singh, and F. Mueller, “Just-in-time quantum circuit transpilation reduces noise,” in 2020 IEEE International Conference on Quantum Computing and Engineering (QCE), 2020, pp. 345–355.
  6. K. Temme, S. Bravyi, and J. M. Gambetta, “Error mitigation for short-depth quantum circuits,” Physical Review Letters, vol. 119, 180509, 2017.
  7. A. Mari, N. Shammah, and W. J. Zeng, “Extending quantum probabilistic error cancellation by noise scaling,” Physical Review A, vol. 104, 052607, 2021.
  8. Z. Cai, R. Babbush, S. C. Benjamin, S. Endo, W. J. Huggins, Y. Li, J. R. McClean, and T. E. O’Brien, “Quantum error mitigation,” arXiv:2210.00921, 2023.
  9. D. Bultrini, M. H. Gordon, P. Czarnik, A. Arrasmith, M. Cerezo, P. J. Coles, and L. Cincio, “Unifying and benchmarking state-of-the-art quantum error mitigation techniques,” Quantum, vol. 7, 1034, 2023.
  10. A. Kandala, K. Temme, A. D. Córcoles, A. Mezzacapo, J. M. Chow, and J. M. Gambetta, “Error mitigation extends the computational reach of a noisy quantum processor,” Nature, vol. 567, no. 7749, pp. 491–495, 2019.
  11. T. Giurgica-Tiron, Y. Hindy, R. LaRose, A. Mari, and W. J. Zeng, “Digital zero noise extrapolation for quantum error mitigation,” in 2020 IEEE International Conference on Quantum Computing and Engineering (QCE), 2020, pp. 306–316.
  12. S. Zhang, Y. Lu, K. Zhang, W. Chen, Y. Li, J.-N. Zhang, and K. Kim, “Error-mitigated quantum gates exceeding physical fidelities in a trapped-ion system,” Nature Communications, vol. 11, no. 1, 587, 2020.
  13. A. Lowe, M. H. Gordon, P. Czarnik, A. Arrasmith, P. J. Coles, and L. Cincio, “Unified approach to data-driven quantum error mitigation,” Physical Review Research, vol. 3 033098, 2021.
  14. “Measurement error mitigation,” qiskit.org. https://qiskit.org/ documentation/stable/0.26/tutorials/noise/3_measurement_error_mitigation.html.
  15. “IBM Quantum,” ibm.com. https://quantum-computing.ibm.com.
  16. M. S. Anis et al., “Qiskit: An open-source framework for quantum computing,” doi.org. https://doi.org/10.5281/zenodo.2573505.
  17. V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum random access memory,” Physical Review Letters, vol. 100, 160501, 2008.
  18. S. Arunachalam, V. Gheorghiu, T. Jochym-O’Connor, M. Mosca, and P. V. Srinivasan, “On the robustness of bucket brigade quantum RAM,” New Journal of Physics, vol. 17, no. 12, 123010, 2015.
  19. O. D. Matteo, V. Gheorghiu, and M. Mosca, “Fault-tolerant resource estimation of quantum random-access memories,” IEEE Transactions on Quantum Engineering, vol. 1, pp. 1–13, 2020.
  20. C. T. Hann, G. Lee, S. Girvin, and L. Jiang, “Resilience of quantum random access memory to generic noise,” PRX Quantum, vol. 2, 020311, 2021.
  21. A. Paler, O. Oumarou, and R. Basmadjian, “Parallelizing the queries in a bucket-brigade quantum random access memory,” Physical Review A, vol. 102, 032608, 2020.
  22. M. C. Tran, K. Sharma, and K. Temme, “Locality and error mitigation of quantum circuits,” arXiv:2303.06496, 2023.
  23. A. He, B. Nachman, W. A. de Jong, and C. W. Bauer, “Zero-noise extrapolation for quantum-gate error mitigation with identity insertions,” Physical Review A, vol. 102, 012426, 2020.
  24. G. J. Hahn, “The hazards of extrapolation in regression analysis,” Journal of Quality Technology, vol. 9, no. 4, pp. 159–165, 1977.
  25. R. LaRose, A. Mari, S. Kaiser, P. J. Karalekas, A. A. Alves, P. Czarnik, M. El Mandouh, M. H. Gordon, Y. Hindy, A. Robertson, P. Thakre, M. Wahl, D. Samuel, R. Mistri, M. Tremblay, N. Gardner, N. T. Stemen, N. Shammah, and W. J. Zeng, “Mitiq: A software package for error mitigation on noisy quantum computers,” Quantum, vol. 6, 774, 2022.
  26. K. Phalak, A. Chatterjee, and S. Ghosh, “Quantum random access memory for dummies,” arXiv:2305.01178, 2023.
  27. S. Xu, C. T. Hann, B. Foxman, S. M. Girvin, and Y. Ding, “Systems architecture for quantum random access memory,” arXiv:2306.03242, 2023.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com