Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantized Constant-Envelope Waveform Design for Massive MIMO DFRC Systems (2403.06185v1)

Published 10 Mar 2024 in cs.IT, eess.SP, math.IT, and math.OC

Abstract: Both dual-functional radar-communication (DFRC) and massive multiple-input multiple-output (MIMO) have been recognized as enabling technologies for 6G wireless networks. This paper considers the advanced waveform design for hardware-efficient massive MIMO DFRC systems. Specifically, the transmit waveform is imposed with the quantized constant-envelope (QCE) constraint, which facilitates the employment of low-resolution digital-to-analog converters (DACs) and power-efficient amplifiers. The waveform design problem is formulated as the minimization of the mean square error (MSE) between the designed and desired beampatterns subject to the constructive interference (CI)-based communication quality of service (QoS) constraints and the QCE constraint. To solve the formulated problem, we first utilize the penalty technique to transform the discrete problem into an equivalent continuous penalty model. Then, we propose an inexact augmented Lagrangian method (ALM) algorithm for solving the penalty model. In particular, the ALM subproblem at each iteration is solved by a custom-built block successive upper-bound minimization (BSUM) algorithm, which admits closed-form updates, making the proposed inexact ALM algorithm computationally efficient. Simulation results demonstrate the superiority of the proposed approach over existing state-of-the-art ones. In addition, extensive simulations are conducted to examine the impact of various system parameters on the trade-off between communication and radar performances.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (43)
  1. L. Zheng, M. Lops, Y. C. Eldar, and X. Wang, “Radar and communication coexistence: An overview,” IEEE Signal Process. Mag., vol. 36, no. 5, pp. 85–99, Sept. 2019.
  2. F. Liu, C. Masouros, A. Li, T. Ratnarajah, and J. Zhou, “MIMO radar and cellular coexistence: A power-efficient approach enabled by interference exploitation,” IEEE Trans. Signal Process., vol. 66, no. 14, pp. 3681–3695, Jul. 2018.
  3. P. Kumari, J. Choi, N. González-Prelcic, and R. W. Heath, “IEEE 802.11ad-based radar: An approach to joint vehicular communication-radar system,” IEEE Trans. Veh. Technol., vol. 67, no. 4, pp. 3012–3027, Apr. 2018.
  4. F. Liu, L. Zhou, C. Masouros, A. Li, W. Luo, and A. Petropulu, “Toward dual-functional radar-communication systems: Optimal waveform design,” IEEE Trans. Signal Process., vol. 66, no. 16, pp. 4264–4279, Aug. 2018.
  5. X. Liu, T. Huang, N. Shlezinger, Y. Liu, J. Zhou, and Y. C. Eldar, “Joint transmit beamforming for multiuser MIMO communications and MIMO radar,” IEEE Trans. Signal Process., vol. 68, pp. 3929–3944, 2020.
  6. F. Liu, Y.-F. Liu, A. Li, C. Masouros, and Y. C. Eldar, “Cramér-Rao bound optimization for joint radar-communication beamforming,” IEEE Trans. Signal Process., vol. 70, pp. 240–253, 2022.
  7. F. Liu, Y. Cui, C. Masouros, J. Xu, T. X. Han, Y. C. Eldar, and S. Buzzi, “Integrated sensing and communications: Toward dual-functional wireless networks for 6G and beyond,” IEEE J. Sel. Areas Commun., vol. 40, no. 6, pp. 1728–1767, Jun. 2022.
  8. J. A. Zhang, F. Liu, C. Masouros, R. W. Heath, Z. Feng, L. Zheng, and A. Petropulu, “An overview of signal processing techniques for joint communication and radar sensing,” IEEE J. Sel. Top. Signal Process., vol. 15, no. 6, pp. 1295–1315, Nov. 2021.
  9. Z. Wang, J. Wu, Y.-F. Liu, and F. Liu, “Globally optimal beamforming design for integrated sensing and communication systems,” 2023. [Online]. Available: http://arxiv.org/abs/2309.06674
  10. I.-R. WP5D, “Draft new recommendation ITU-RM.[IMT.FRAMEWORK FOR 2030 AND BEYOND],” 2023.
  11. F. Rusek, D. Persson, B. K. Lau, E. G. Larsson, T. L. Marzetta, O. Edfors, and F. Tufvesson, “Scaling up MIMO: Opportunities and challenges with very large arrays,” IEEE Signal Process. Mag., vol. 30, no. 1, pp. 40–60, Jan. 2013.
  12. S. Jacobsson, G. Durisi, M. Coldrey, T. Goldstein, and C. Studer, “Quantized precoding for massive MU-MIMO,” IEEE Trans. Commun., vol. 65, no. 11, pp. 4670–4684, Nov. 2017.
  13. Z. Wu, J. Wu, W.-K. Chen, and Y.-F. Liu, “Diversity order analysis for quantized constant envelope transmission,” IEEE Open J. Signal Process., vol. 4, pp. 21–30, 2023.
  14. Z. Wu, J. Ma, Y.-F. Liu, and A. L. Swindlehurst, “Asymptotic SEP analysis and optimization of linear-quantized precoding in massive MIMO systems,” IEEE Trans. Inf. Theory (early access), 2023.
  15. M. Kazemi, H. Aghaeinia, and T. M. Duman, “Discrete-phase constant envelope precoding for massive MIMO systems,” IEEE Trans. Commun., vol. 65, no. 5, pp. 2011–2021, May 2017.
  16. M. Shao, Q. Li, W.-K. Ma, and A. M.-C. So, “A framework for one-bit and constant-envelope precoding over multiuser massive MISO channels,” IEEE Trans. Signal Process., vol. 67, no. 20, pp. 5309–5324, Oct. 2019.
  17. H. Jedda, A. Mezghani, A. L. Swindlehurst, and J. A. Nossek, “Quantized constant envelope precoding with PSK and QAM signaling,” IEEE Trans. Wireless Commun., vol. 17, no. 12, pp. 8022–8034, Dec. 2018.
  18. Z. Wu, Y.-F. Liu, B. Jiang, and Y.-H. Dai, “Efficient quantized constant envelope precoding for multiuser downlink massive MIMO systems,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., Rhodes Island, Greece, Jun. 2023, pp. 1–5.
  19. C. Masouros, “Correlation rotation linear precoding for MIMO broadcast communications,” IEEE Trans. Signal Process., vol. 59, no. 1, pp. 252–262, Jan. 2011.
  20. C. Masouros, M. Sellathurai, and T. Ratnarajah, “Vector perturbation based on symbol scaling for limited feedback MISO downlinks,” IEEE Trans. Signal Process., vol. 62, no. 3, pp. 562–571, Feb. 2014.
  21. C. Masouros and G. Zheng, “Exploiting known interference as green signal power for downlink beamforming optimization,” IEEE Trans. Signal Process., vol. 63, no. 14, pp. 3628–3640, Jul. 2015.
  22. A. Li, D. Spano, J. Krivochiza, S. Domouchtsidis, C. G. Tsinos, C. Masouros, S. Chatzinotas, Y. Li, B. Vucetic, and B. Ottersten, “A tutorial on interference exploitation via symbol-level precoding: Overview, state-of-the-art and future directions,” IEEE Commun. Surveys Tuts., vol. 22, no. 2, pp. 796–839, 2nd Quart. 2020.
  23. S. Ahmed, J. S. Thompson, Y. R. Petillot, and B. Mulgrew, “Finite alphabet constant-envelope waveform design for MIMO radar,” IEEE Trans. Signal Process., vol. 59, no. 11, pp. 5326–5337, Nov. 2011.
  24. A. Mezghani and R. W. Heath, “MIMO beampattern and waveform design with low resolution DACs,” in Proc. IEEE Radar Conf., Boston, MA, USA, Apr. 2019, pp. 1–6.
  25. J. Wen and B. Liao, “A block coordinate descent approach to design constant modulus waveform for MIMO radar with low-resolution DACs,” in Proc. IEEE Int. Conf. Inf. Commun. Signal Process., Shenzhen, China, Nov. 2022, pp. 349–354.
  26. A. K. Saxena, I. Fijalkow, and A. L. Swindlehurst, “Analysis of one-bit quantized precoding for the multiuser massive MIMO downlink,” IEEE Trans. Signal Process., vol. 65, no. 17, pp. 4624–4634, Sept. 2017.
  27. H. Jedda, A. Mezghani, J. A. Nossek, and A. L. Swindlehurst, “Massive MIMO downlink 1-bit precoding with linear programming for PSK signaling,” in Proc. IEEE Workshop Signal Process. Adv. Wireless Commun., Jul. 2017, pp. 1–5.
  28. A. Li, C. Masouros, F. Liu, and A. L. Swindlehurst, “Massive MIMO 1-bit DAC transmission: A low-complexity symbol scaling approach,” IEEE Trans. Wireless Commun., vol. 17, no. 11, pp. 7559–7575, Nov. 2018.
  29. F. Sohrabi, Y.-F. Liu, and W. Yu, “One-bit precoding and constellation range design for massive MIMO with QAM signaling,” IEEE J. Sel. Topics Signal Process., vol. 12, no. 3, pp. 557–570, Jun. 2018.
  30. Z. Wu, B. Jiang, Y.-F. Liu, M. Shao, and Y.-H. Dai, “Efficient CI-based one-bit precoding for multiuser downlink massive MIMO systems with PSK modulation,” IEEE Trans. Wireless Commun. (early access), 2023.
  31. M. Deng, Z. Cheng, L. Wu, B. Shankar, and Z. He, “One-bit ADCs/DACs based MIMO radar: Performance analysis and joint design,” IEEE Trans. Signal Process., vol. 70, pp. 2609–2624, 2022.
  32. Z. Cheng, B. Liao, Z. He, and J. Li, “Transmit signal design for large-scale MIMO system with 1-bit DACs,” IEEE Trans. Wireless Commun., vol. 18, no. 9, pp. 4466–4478, Sept. 2019.
  33. M. Deng, Z. Cheng, and Z. He, “Spectrally compatible waveform design for large-scale MIMO radar beampattern synthesis with one-bit DACs,” IEEE Trans. Aerosp. Electron. Syst., vol. 58, no. 5, pp. 4729–4744, Oct. 2022.
  34. Z. Cheng, S. Shi, Z. He, and B. Liao, “Transmit sequence design for dual-function radar-communication system with one-bit DACs,” IEEE Trans. Wireless Commun., vol. 20, no. 9, pp. 5846–5860, Sept. 2021.
  35. J. Yan and J. Zheng, “Transmit signal design of MIMO dual-function radar communication with 1-bit DACs,” in Proc. IEEE Workshop Signal Process. Adv. Wireless Commun., Jul. 2022, pp. 1–5.
  36. X. Yu, Q. Yang, Z. Xiao, H. Chen, V. Havyarimana, and Z. Han, “A precoding approach for dual-functional radar-communication system with one-bit DACs,” IEEE J. Sel. Areas Commun., vol. 40, no. 6, pp. 1965–1977, Jun. 2022.
  37. R. Liu, M. Li, Q. Liu, and A. L. Swindlehurst, “Dual-functional radar-communication waveform design: A symbol-level precoding approach,” IEEE J. Sel. Topics Signal Process., vol. 15, no. 6, pp. 1316–1331, Nov. 2021.
  38. Z. Zhang, Q. Chang, F. Liu, and S. Yang, “Dual-functional radar-communication waveform design: Interference reduction versus exploitation,” IEEE Commun. Lett., vol. 26, no. 1, pp. 148–152, Jan. 2022.
  39. N. Su, F. Liu, Z. Wei, Y.-F. Liu, and C. Masouros, “Secure dual-functional radar-communication transmission: Exploiting interference for resilience against target eavesdropping,” IEEE Trans. Wireless Commun., vol. 21, no. 9, pp. 7238–7252, Sept. 2022.
  40. P. Stoica, J. Li, and Y. Xie, “On probing signal design for MIMO radar,” IEEE Trans. Signal Process., vol. 55, no. 8, pp. 4151–4161, Aug. 2007.
  41. Y.-F. Liu, T.-H. Chang, M. Hong, Z. Wu, A. M.-C. So, E. A. Jorswieck, and W. Yu, “A survey of advances in optimization methods for wireless communication system design,” 2024. [Online]. Available: http://arxiv.org/abs/2401.12025
  42. G. Galvan, M. Lapucci, T. Levato, and M. Sciandrone, “An alternating augmented Lagrangian method for constrained nonconvex optimization,” Optim. Methods Softw., vol. 35, no. 3, pp. 502–520, 2020.
  43. M. Razaviyayn, M. Hong, and Z.-Q. Luo, “A unified convergence analysis of block successive minimization methods for nonsmooth optimization,” SIAM J. Optim., vol. 23, no. 2, pp. 1126–1153, 2013.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com