Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
Gemini 2.5 Pro Premium
52 tokens/sec
GPT-5 Medium
24 tokens/sec
GPT-5 High Premium
28 tokens/sec
GPT-4o
85 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
478 tokens/sec
Kimi K2 via Groq Premium
221 tokens/sec
2000 character limit reached

Direct Shooting Method for Numerical Optimal Control: A Modified Transcription Approach (2403.06167v1)

Published 10 Mar 2024 in eess.SY and cs.SY

Abstract: Direct shooting is an efficient method to solve numerical optimal control. It utilizes the Runge-Kutta scheme to discretize a continuous-time optimal control problem making the problem solvable by nonlinear programming solvers. However, conventional direct shooting raises a contradictory dynamics issue when using an augmented state to handle {high-order} systems. This paper fills the research gap by considering the direct shooting method for {high-order} systems. We derive the modified Euler and Runge-Kutta-4 methods to transcribe the system dynamics constraint directly. Additionally, we provide the global error upper bounds of our proposed methods. A set of benchmark optimal control problems shows that our methods provide more accurate solutions than existing approaches.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. B. Yang, Y. Lu, X. Yang, and Y. Mo, “A hierarchical control framework for drift maneuvering of autonomous vehicles,” in IEEE International Conference on Robotics and Automation, 2022, pp. 1387–1393.
  2. A. Romero, S. Sun, P. Foehn, and D. Scaramuzza, “Model predictive contouring control for time-optimal quadrotor flight,” IEEE Transactions on Robotics, vol. 38, no. 6, pp. 3340–3356, 2022.
  3. R. Wang, H. Li, B. Liang, Y. Shi, and D. Xu, “Policy learning for nonlinear model predictive control with application to USVs,” IEEE Transactions on Industrial Electronics, pp. 1–9, 2023.
  4. M. Kelly, “An introduction to trajectory optimization: How to do your own direct collocation,” SIAM Review, vol. 59, no. 4, pp. 849–904, 2017.
  5. M. P. Kelly, “OptimTraj: Trajectory Optimization for Matlab,” 2022. [Online]. Available: https://github.com/MatthewPeterKelly/OptimTraj
  6. M. A. Patterson and A. V. Rao, “GPOPS-II: A MATLAB software for solving multiple-phase optimal control problems using Hp-adaptive Gaussian quadrature collocation methods and sparse nonlinear programming,” vol. 41, no. 1, 2014.
  7. V. M. Becerra, “PSOPT optimal control solver user manual,” University of Reading, 2010.
  8. D. Q. Mayne, “Differential dynamic programming–a unified approach to the optimization of dynamic systems,” in Control and Dynamic Systems.   Elsevier, 1973, vol. 10, pp. 179–254.
  9. W. Li and E. Todorov, “Iterative linear quadratic regulator design for nonlinear biological movement systems,” in Proceedings of the First International Conference on Informatics in Control, Automation and Robotics, vol. 2.   SciTePress, 2004, pp. 222–229.
  10. T. A. Howell, B. E. Jackson, and Z. Manchester, “ALTRO: A fast solver for constrained trajectory optimization,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2019, pp. 7674–7679.
  11. F. Farshidian et al., “OCS2: An open source library for optimal control of switched systems,” [Online]. Available: https://github.com/leggedrobotics/ocs2.
  12. B. E. Jackson, K. Tracy, and Z. Manchester, “Planning with attitude,” IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 5658–5664, 2021.
  13. J. Ma, Z. Cheng, X. Zhang, M. Tomizuka, and T. H. Lee, “Alternating direction method of multipliers for constrained iterative LQR in autonomous driving,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 12, pp. 23 031–23 042, 2022.
  14. G. Alcan, F. J. Abu-Dakka, and V. Kyrki, “Trajectory optimization on matrix lie groups with differential dynamic programming and nonlinear constraints,” ArXiv, vol. abs/2301.02018, 2023.
  15. W. Jallet, N. Mansard, and J. Carpentier, “Implicit differential dynamic programming,” in International Conference on Robotics and Automation (ICRA), 2022, pp. 1455–1461.
  16. S. Moreno Martín, L. Ros Giralt, and E. Celaya Llover, “Collocation methods for second order systems,” in Proceedings of the XVIII Robotics: Science and Systems Conference (RSS), 2022, pp. 1–11.
  17. L. Simpson, A. Nurkanović, and M. Diehl, “Direct collocation for numerical optimal control of second-order ODE,” in Proceedings of European Control Conference (ECC), 2023, pp. 1–7.
  18. S. Moreno-Martín, L. Ros, and E. Celaya, “A Legendre-Gauss pseudospectral collocation method for trajectory optimization in second order systems,” in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2022, pp. 13 335–13 340.
  19. J. A. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl, “CasADi: a software framework for nonlinear optimization and optimal control,” Mathematical Programming Computation, vol. 11, pp. 1–36, 2019.
  20. A. Wächter and L. T. Biegler, “On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming,” Mathematical Programming, vol. 106, pp. 25–57, 2006.
  21. C. Chevallereau, G. Abba, Y. Aoustin, F. Plestan, E. Westervelt, C. Canudas-De-Wit, and J. Grizzle, “RABBIT: a testbed for advanced control theory,” IEEE Control Systems Magazine, vol. 23, no. 5, pp. 57–79, 2003.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.