Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Decentralized P2P Trading based on Blockchain for Retail Electricity Markets (2403.06112v1)

Published 10 Mar 2024 in eess.SY and cs.SY

Abstract: This paper introduces peer to peer (P2P) trading mechanisms based on decentralized Blockchain to facilitate retail electricity market for ever-increasing distributed energy resources (DERs). The Blockchain network supports fast and secure retail trading among DERs and facilitates a sustainable local P2P trading platform. In this decentralized Blockchain architecture no single entity or organization has control over the entire system rather all users collectively maintain control. The effectiveness of the proposed automated market design and optimization is simulated using different use case scenarios in an open source Blockchain Simulator and MATLAB. The results show the efficacy of the trading mechanism in achieving demand response through strategies such as peak load shaving, load shifting, and integration of DERs.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. A. Mizrahi, “A blockchain-based property ownership recording system,” A blockchain-based property ownership recording System, 2015.
  2. I. Kar, “Estonian citizens will soon have the world’s most hack-proof health-care records,” Online]. Quartz, March, vol. 3, 2016.
  3. S. Lacey, “The energy blockchain: How bitcoin could be a catalyst for the distributed grid,” GreenTech media, vol. 26, 2016.
  4. J. Kelly and A. Williams, “Forty big banks test blockchain-based bond trading system,” Online]. Reuters, March, vol. 3, 2016.
  5. M. Walport, Distributed ledger technology: Beyond block chain. Government Office for Science, 2016.
  6. C. Cachin et al., “Architecture of the hyperledger blockchain fabric,” in Workshop on distributed cryptocurrencies and consensus ledgers, vol. 310, pp. 1–4, Chicago, IL, 2016.
  7. R. Khalid, N. Javaid, S. Javaid, M. Imran, and N. Naseer, “A blockchain-based decentralized energy management in a p2p trading system,” in ICC 2020-2020 IEEE International Conference on Communications (ICC), pp. 1–6, IEEE, 2020.
  8. K. Zhou, J. Chong, X. Lu, and S. Yang, “Credit-based peer-to-peer electricity trading in energy blockchain environment,” IEEE Transactions on Smart Grid, vol. 13, no. 1, pp. 678–687, 2021.
  9. M. Zhang, F. Eliassen, A. Taherkordi, H.-A. Jacobsen, H.-M. Chung, and Y. Zhang, “Demand–response games for peer-to-peer energy trading with the hyperledger blockchain,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 52, no. 1, pp. 19–31, 2022.
  10. J. Dreyer, M. Fischer, and R. Tönjes, “Performance analysis of hyperledger fabric 2.0 blockchain platform,” in Proceedings of the workshop on cloud continuum services for smart IoT systems, pp. 32–38, 2020.
  11. T. Sousa, T. Soares, P. Pinson, F. Moret, T. Baroche, and E. Sorin, “Peer-to-peer and community-based markets: A comprehensive review,” Renewable and Sustainable Energy Reviews, vol. 104, pp. 367–378, 2019.
  12. M. H. Nazari and M. Parniani, “Determining and optimizing power loss reduction in distribution feeders due to distributed generation,” in 2006 IEEE PES Power Systems Conference and Exposition, pp. 1914–1918, 2006.
  13. M. H. Nazari, “Making the most out of distributed generation without endangering normal operation: A model-based technical-policy approach,” 2012.
  14. W. Tushar, C. Yuen, H. Mohsenian-Rad, T. Saha, H. V. Poor, and K. L. Wood, “Transforming energy networks via peer-to-peer energy trading: The potential of game-theoretic approaches,” IEEE Signal Processing Magazine, vol. 35, no. 4, pp. 90–111, 2018.
  15. W. Tushar, T. K. Saha, C. Yuen, D. Smith, and H. V. Poor, “Peer-to-peer trading in electricity networks: An overview,” IEEE Transactions on Smart Grid, vol. 11, no. 4, pp. 3185–3200, 2020.
  16. T. Morstyn, A. Teytelboym, and M. D. McCulloch, “Bilateral contract networks for peer-to-peer energy trading,” IEEE Transactions on Smart Grid, vol. 10, no. 2, pp. 2026–2035, 2018.
  17. L. Thomas, Y. Zhou, C. Long, J. Wu, and N. Jenkins, “A general form of smart contract for decentralized energy systems management,” Nature Energy, vol. 4, no. 2, pp. 140–149, 2019.
  18. T. Morstyn and M. D. McCulloch, “Multiclass energy management for peer-to-peer energy trading driven by prosumer preferences,” IEEE Transactions on Power Systems, vol. 34, no. 5, pp. 4005–4014, 2018.
  19. M. Faizan, T. Brenner, F. Foerster, C. Wittwer, and B. Koch, “Decentralized bottom-up energy trading using ethereum as a platform,” Journal of Energy Markets, vol. 12, no. 2, 2019.
  20. M. E. Peck and D. Wagman, “Energy trading for fun and profit buy your neighbor’s rooftop solar power or sell your own-it’ll all be on a blockchain,” IEEE Spectrum, vol. 54, no. 10, pp. 56–61, 2017.
  21. S. Wang, A. F. Taha, J. Wang, K. Kvaternik, and A. Hahn, “Energy crowdsourcing and peer-to-peer energy trading in blockchain-enabled smart grids,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 49, no. 8, pp. 1612–1623, 2019.
  22. Y. Li, W. Yang, P. He, C. Chen, and X. Wang, “Design and management of a distributed hybrid energy system through smart contract and blockchain,” Applied Energy, vol. 248, pp. 390–405, 2019.
  23. C. Gorenflo, S. Lee, L. Golab, and S. Keshav, “Fastfabric: Scaling hyperledger fabric to 20 000 transactions per second,” International Journal of Network Management, vol. 30, no. 5, p. e2099, 2020.
  24. S. Xie, M. H. Nazari, F. Nezampasandarbabi, and L. Y. Wang, “Leveraging deep learning to improve performance of distributed optimal frequency control under communication failures,” IEEE Transactions on Smart Grid, vol. 14, no. 1, pp. 746–756, 2023.
  25. Blockchain Demo, https://andersbrownworth.com/blockchain/coinbase.

Summary

We haven't generated a summary for this paper yet.