Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multisize Dataset Condensation (2403.06075v2)

Published 10 Mar 2024 in cs.CV

Abstract: While dataset condensation effectively enhances training efficiency, its application in on-device scenarios brings unique challenges. 1) Due to the fluctuating computational resources of these devices, there's a demand for a flexible dataset size that diverges from a predefined size. 2) The limited computational power on devices often prevents additional condensation operations. These two challenges connect to the "subset degradation problem" in traditional dataset condensation: a subset from a larger condensed dataset is often unrepresentative compared to directly condensing the whole dataset to that smaller size. In this paper, we propose Multisize Dataset Condensation (MDC) by compressing N condensation processes into a single condensation process to obtain datasets with multiple sizes. Specifically, we introduce an "adaptive subset loss" on top of the basic condensation loss to mitigate the "subset degradation problem". Our MDC method offers several benefits: 1) No additional condensation process is required; 2) reduced storage requirement by reusing condensed images. Experiments validate our findings on networks including ConvNet, ResNet and DenseNet, and datasets including SVHN, CIFAR-10, CIFAR-100 and ImageNet. For example, we achieved 5.22%-6.40% average accuracy gains on condensing CIFAR-10 to ten images per class. Code is available at: https://github.com/he-y/Multisize-Dataset-Condensation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (46)
  1. Tinytl: Reduce memory, not parameters for efficient on-device learning. Proc. Adv. Neural Inform. Process. Syst., 33:11285–11297, 2020.
  2. Dataset distillation by matching training trajectories. In Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2022.
  3. Generalizing dataset distillation via deep generative prior. In Proc. IEEE Conf. Comput. Vis. Pattern Recog., pp.  3739–3748, 2023.
  4. Scaling up dataset distillation to imagenet-1k with constant memory. In Proc. Int. Conf. Mach. Learn., pp.  6565–6590. PMLR, 2023.
  5. Imagenet: A large-scale hierarchical image database. In Proc. IEEE Conf. Comput. Vis. Pattern Recog., pp.  248–255, 2009.
  6. Remember the past: Distilling datasets into addressable memories for neural networks. In Proc. Adv. Neural Inform. Process. Syst., 2022.
  7. A survey of on-device machine learning: An algorithms and learning theory perspective. ACM Transactions on Internet of Things, 2(3):1–49, 2021.
  8. Minimizing the accumulated trajectory error to improve dataset distillation. In Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2023.
  9. Dynamic few-shot visual learning without forgetting. In Proc. IEEE Conf. Comput. Vis. Pattern Recog., pp.  4367–4375, 2018.
  10. Deep residual learning for image recognition. In Proc. IEEE Conf. Comput. Vis. Pattern Recog., pp.  770–778, 2016.
  11. You only condense once: Two rules for pruning condensed datasets. Advances in Neural Information Processing Systems, 36, 2024.
  12. Densely connected convolutional networks. In Proc. IEEE Conf. Comput. Vis. Pattern Recog., pp.  4700–4708, 2017.
  13. Delving into effective gradient matching for dataset condensation. arXiv preprint arXiv:2208.00311, 2022.
  14. On divergence measures for bayesian pseudocoresets. In Proc. Adv. Neural Inform. Process. Syst., volume 35, pp.  757–767, 2022a.
  15. Dataset condensation via efficient synthetic-data parameterization. In Proc. Int. Conf. Mach. Learn., 2022b. URL https://github.com/snu-mllab/Efficient-Dataset-Condensation.
  16. Learning multiple layers of features from tiny images. Technical report, Citeseer, 2009.
  17. Dataset condensation with latent space knowledge factorization and sharing. arXiv preprint arXiv:2208.10494, 2022a.
  18. An overview of energy-efficient hardware accelerators for on-device deep-neural-network training. IEEE Open Journal of the Solid-State Circuits Society, 1:115–128, 2021.
  19. Dataset condensation with contrastive signals. In Proc. Int. Conf. Mach. Learn., pp.  12352–12364, 2022b.
  20. Dataset distillation using parameter pruning. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2023.
  21. On-device training under 256kb memory. Proc. Adv. Neural Inform. Process. Syst., 35:22941–22954, 2022.
  22. Dataset distillation via factorization. In Proc. Adv. Neural Inform. Process. Syst., 2022.
  23. Slimmable dataset condensation. In Proc. IEEE Conf. Comput. Vis. Pattern Recog., pp.  3759–3768, 2023a.
  24. DREAM: Efficient dataset distillation by representative matching. arXiv preprint arXiv:2302.14416, 2023b.
  25. Efficient dataset distillation using random feature approximation. In Proc. Adv. Neural Inform. Process. Syst., 2022.
  26. Dataset distillation with convexified implicit gradients. In Proc. Int. Conf. Mach. Learn., 2023.
  27. The street view house numbers (svhn) dataset. http://ufldl.stanford.edu/housenumbers/, 2011.
  28. Dataset meta-learning from kernel ridge-regression. In Proc. Int. Conf. Learn. Represent., 2021a.
  29. Dataset distillation with infinitely wide convolutional networks. In Proc. Adv. Neural Inform. Process. Syst., pp.  5186–5198, 2021b.
  30. Pranc: Pseudo random networks for compacting deep models. arXiv preprint arXiv:2206.08464, 2022.
  31. ZeroFL: Efficient on-device training for federated learning with local sparsity. In Proc. Int. Conf. Learn. Represent., 2022.
  32. Loss-curvature matching for dataset selection and condensation. In International Conference on Artificial Intelligence and Statistics, pp.  8606–8628, 2023.
  33. Dataset distillation meets provable subset selection. arXiv preprint arXiv:2307.08086, 2023.
  34. Cafe: Learning to condense dataset by aligning features. In Proc. IEEE Conf. Comput. Vis. Pattern Recog., pp.  12196–12205, 2022.
  35. Dim: Distilling dataset into generative model. arXiv preprint arXiv:2303.04707, 2023.
  36. Dataset distillation. arXiv preprint arXiv:1811.10959, 2018.
  37. Rep-net: Efficient on-device learning via feature reprogramming. In Proc. IEEE Conf. Comput. Vis. Pattern Recog., pp.  12277–12286, 2022.
  38. Efficient on-device training via gradient filtering. In Proc. IEEE Conf. Comput. Vis. Pattern Recog., pp.  3811–3820, 2023.
  39. Dataset condensation via generative model. arXiv preprint arXiv:2309.07698, 2023a.
  40. Accelerating dataset distillation via model augmentation. In Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2023b.
  41. Bo Zhao and Hakan Bilen. Dataset condensation with differentiable siamese augmentation. In Proc. Int. Conf. Mach. Learn., pp.  12674–12685, 2021.
  42. Bo Zhao and Hakan Bilen. Synthesizing informative training samples with GAN. In NeurIPS 2022 Workshop on Synthetic Data for Empowering ML Research, 2022.
  43. Bo Zhao and Hakan Bilen. Dataset condensation with distribution matching. In Proc. IEEE Winter Conf. Appl. Comput. Vis., pp.  6514–6523, 2023.
  44. Dataset condensation with gradient matching. In Proc. Int. Conf. Learn. Represent., 2021.
  45. Improved distribution matching for dataset condensation. In Proc. IEEE Conf. Comput. Vis. Pattern Recog., pp.  7856–7865, 2023.
  46. Dataset distillation using neural feature regression. In Proc. Adv. Neural Inform. Process. Syst., 2022.
Citations (8)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com