Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Channel Estimation Considerate Precoder Design for Multi-user Massive MIMO-OFDM Systems: The Concept and Fast Algorithms (2403.06072v2)

Published 10 Mar 2024 in cs.IT, eess.SP, and math.IT

Abstract: The sixth-generation (6G) communication networks target peak data rates exceeding 1Tbps, necessitating base stations (BS) to support up to 100 simultaneous data streams. However, sparse pilot allocation to accommodate such streams poses challenges for users' channel estimation. This paper presents Channel Estimation Considerate Precoding (CECP), where BS precoders prioritize facilitating channel estimation alongside maximizing transmission rate. To address the computational complexity of 6G large-scale multi-input multi-output (MIMO) systems, we propose a computationally-efficient space-time block diagonal channel shortening (ST-BDCS) precoding scheme. By leveraging the sparse Toeplitz property of orthogonal frequency division multiplexing (OFDM) channels, this time-domain precoding design effectively mitigates multi-user interference in the downlink and shortens the effective channel's temporal length. Consequently, users can estimate the channels using sparse pilots. To enable fast implementation, we develop a generalized complex-valued Toeplitz matrix QR decomposition algorithm applicable to various space-time signal processing problems. Simulation results demonstrate that the ST-BDCS precoding method approximates the rate performance of conventional subcarrier-by-subcarrier precoding schemes. However, it offers the advantages of easier channel estimation for users and significantly reduced computational complexity for the BS.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. N. Rajatheva, I. Atzeni, E. Bjornson, A. Bourdoux, S. Buzzi, J.-B. Dore, S. Erkucuk, M. Fuentes, K. Guan, Y. Hu et al., “White paper on broadband connectivity in 6G,” arXiv preprint arXiv:2004.14247, 2020.
  2. Z. Zhang, Y. Xiao, Z. Ma, M. Xiao, Z. Ding, X. Lei, G. K. Karagiannidis, and P. Fan, “6G wireless networks: Vision, requirements, architecture, and key technologies,” IEEE Vehicular Technology Magazine, vol. 14, no. 3, pp. 28–41, 2019.
  3. Z. Wang, J. Zhang, H. Du, E. Wei, B. Ai, D. Niyato, and M. Debbah, “Extremely large-scale MIMO: Fundamentals, challenges, solutions, and future directions,” IEEE Wireless Communications, 2023.
  4. J. Liu, W. Zhang, and Y. Jiang, “Fast Computation of Zero-Forcing Precoding for Massive MIMO-OFDM Systems,” IEEE Transactions on Signal Processing, 2024.
  5. Y.-W. Liang, R. Schober, and W. Gerstacker, “Time-domain transmit beamforming for MIMO-OFDM systems with finite rate feedback,” IEEE Transactions on Communications, vol. 57, no. 9, pp. 2828–2838, 2009.
  6. D. Cescato and H. Bölcskei, “Algorithms for interpolation-based QR decomposition in MIMO-OFDM systems,” IEEE Transactions on Signal Processing, vol. 59, no. 4, pp. 1719–1733, 2011.
  7. Y. Liu, G. Y. Li, W. Han, and Z. Zhong, “Low-complexity recursive convolutional precoding for OFDM-based large-scale antenna systems,” IEEE Transactions on Wireless Communications, vol. 15, no. 7, pp. 4902–4913, 2016.
  8. S. Kashyap, C. Mollén, E. Björnson, and E. G. Larsson, “Frequency-domain interpolation of the zero-forcing matrix in massive MIMO-OFDM,” in 2016 IEEE 17th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC).   IEEE, 2016, pp. 1–5.
  9. C. Jeon, Z. Li, and C. Studer, “Approximate Gram-matrix interpolation for wideband massive MU-MIMO systems,” IEEE Transactions on Vehicular Technology, vol. 69, no. 5, pp. 4677–4688, 2020.
  10. W. Hu, F. Li, and Y. Jiang, “Phase rotations of svd-based precoders in mimo-ofdm for improved channel estimation,” IEEE Wireless Communications Letters, vol. 10, no. 8, pp. 1805–1809, 2021.
  11. 3GPP, “TS 38.211 V16.10.0: NR; Physical channels and modulation,” www.3GPP.org, 2022.
  12. ——, “TS 38.214 V16.10.0: NR; Physical layer procedures for data,” www.3GPP.org, 2022.
  13. C. Shen and M. P. Fitz, “Mimo-ofdm beamforming for improved channel estimation,” IEEE Journal on selected Areas in communications, vol. 26, no. 6, pp. 948–959, 2008.
  14. F. Jiang, Q. Li, and X. Chen, “Channel smoothing for 802.11 ax beamformed mimo-ofdm,” IEEE Communications Letters, vol. 25, no. 10, pp. 3413–3417, 2021.
  15. E. Jeon, M. Ahn, S. Kim, W. B. Lee, and J. Kim, “Joint beamformer and beamformee design for channel smoothing in wlan systems,” in 2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall).   IEEE, 2020, pp. 1–6.
  16. F. Rusek and D. Fertonani, “Bounds on the information rate of intersymbol interference channels based on mismatched receivers,” IEEE Transactions on Information Theory, vol. 58, no. 3, pp. 1470–1482, 2012.
  17. F. Rusek and A. Prlja, “Optimal channel shortening for MIMO and ISI channels,” IEEE Transactions on Wireless Communications, vol. 11, no. 2, pp. 810–818, 2011.
  18. A. Modenini, F. Rusek, and G. Colavolpe, “Optimal transmit filters for ISI channels under channel shortening detection,” IEEE Transactions on Communications, vol. 61, no. 12, pp. 4997–5005, 2013.
  19. S. Hu, X. Gao, and F. Rusek, “Linear precoder design for MIMO-ISI broadcasting channels under channel shortening detection,” IEEE Signal Processing Letters, vol. 23, no. 9, pp. 1207–1211, 2016.
  20. R.-A. Pitaval, “Channel Shortening by Large Multiantenna Precoding in OFDM,” IEEE Transactions on Communications, vol. 69, no. 5, pp. 2878–2893, 2021.
  21. J. Wang, Y. Jiang, and G. E. Sobelman, “Iterative computation of FIR MIMO MMSE-DFE with flexible complexity-performance tradeoff,” IEEE Transactions on Signal Processing, vol. 61, no. 9, pp. 2394–2404, 2013.
  22. R. M. Gray et al., “Toeplitz and circulant matrices: A review,” Foundations and Trends® in Communications and Information Theory, vol. 2, no. 3, pp. 155–239, 2006.
  23. D. Sweet, “Fast Toeplitz orthogonalization,” Numerische Mathematik, vol. 43, no. 1, pp. 1–21, 1984.
  24. J. Chun, T. Kailath, and H. Lev-Ari, “Fast parallel algorithms for QR and triangular factorization,” SIAM Journal on Scientific and Statistical Computing, vol. 8, no. 6, pp. 899–913, 1987.
  25. A. Bojanczyk, R. Brent, and F. De Hoog, “QR factorization of Toeplitz matrices,” Numerische Mathematik, vol. 49, no. 1, pp. 81–94, 1986.
  26. Q. H. Spencer, A. L. Swindlehurst, and M. Haardt, “Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels,” IEEE Transactions on Signal Processing, vol. 52, no. 2, pp. 461–471, 2004.
  27. H. Sung, S.-R. Lee, and I. Lee, “Generalized channel inversion methods for multiuser MIMO systems,” IEEE Transactions on Communications, vol. 57, no. 11, pp. 3489–3499, 2009.
  28. L.-N. Tran, M. Juntti, and E.-K. Hong, “On the precoder design for block diagonalized MIMO broadcast channels,” IEEE Communications Letters, vol. 16, no. 8, pp. 1165–1168, 2012.
  29. W. Li and M. Latva-aho, “An efficient channel block diagonalization method for generalized zero forcing assisted MIMO broadcasting systems,” IEEE Transactions on Wireless Communications, vol. 10, no. 3, pp. 739–744, 2010.
  30. L. Sun and M. R. McKay, “Eigen-based transceivers for the MIMO broadcast channel with semi-orthogonal user selection,” IEEE Transactions on Signal Processing, vol. 58, no. 10, pp. 5246–5261, 2010.
  31. 3GPP, “TS 38.901 V16.1.0: Study on channel model for frequencies from 0.5 to 100 GHz,” www.3GPP.org, 2020.

Summary

We haven't generated a summary for this paper yet.