Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Skewed generalized parton distributions of proton from basis light-front quantization (2403.05922v1)

Published 9 Mar 2024 in hep-ph and nucl-th

Abstract: We obtain all the leading-twist quark generalized parton distributions (GPDs) inside the proton at nonzero skewness within the basis light-front quantization framework. We employ the light-front wave functions of the proton from a light-front quantized Hamiltonian in the valence Fock sector consisting of a three-dimensional confinement potential and a one-gluon exchange interaction with fixed coupling. We find that the qualitative behaviors of our GPDs are similar to those of other theoretical calculations. We further examine the GPDs within the boost-invariant longitudinal coordinate, $\sigma=\frac{1}{2} b- P+$, which is identified as the Fourier conjugate of the skewness. The GPDs in the $\sigma$-space show diffraction patterns, which are akin to the diffractive scattering of a wave in optics.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (103)
  1. doi:10.1016/j.ppnp.2023.104069.
  2. arXiv:hep-ph/0005108, doi:10.1103/PhysRevD.62.071503.
  3. arXiv:hep-ph/0207047, doi:10.1142/S0217751X03012370.
  4. arXiv:hep-ph/0110075, doi:10.1103/PhysRevD.66.111501.
  5. arXiv:hep-ph/0604262, doi:10.1016/j.physletb.2006.08.061.
  6. arXiv:hep-ph/0611159, doi:10.1103/PhysRevD.75.014003.
  7. arXiv:0811.0521, doi:10.1103/PhysRevD.79.034006.
  8. arXiv:1012.2627, doi:10.1103/PhysRevD.83.014004.
  9. arXiv:1501.04745, doi:10.1142/S0217751X15500104.
  10. arXiv:1501.05489, doi:10.1140/epjc/s10052-015-3486-6.
  11. arXiv:1509.00598, doi:10.1103/PhysRevD.92.074012.
  12. arXiv:1709.06877, doi:10.1140/epjc/s10052-017-5203-0.
  13. arXiv:hep-ph/9609381, doi:10.1103/PhysRevD.55.7114.
  14. arXiv:hep-ph/0106012, doi:10.1016/S0146-6410(01)00158-2.
  15. arXiv:0708.3569, doi:10.1140/epjc/s10052-007-0466-5.
  16. arXiv:hep-ph/9611433, doi:10.1103/PhysRevD.56.2982.
  17. arXiv:hep-ph/0110062, doi:10.1007/s100520200917.
  18. arXiv:2210.07995, doi:10.1103/PhysRevD.107.014007.
  19. arXiv:2204.00396, doi:10.1103/PhysRevD.105.094025.
  20. arXiv:2212.00655, doi:10.1007/JHEP03(2023)241.
  21. arXiv:hep-ph/9803316, doi:10.1103/PhysRevD.58.114008.
  22. arXiv:hep-ph/9811253, doi:10.1007/s100529901100.
  23. arXiv:2303.13668, doi:10.1103/PhysRevD.107.094035.
  24. arXiv:hep-ex/9808020, doi:10.1007/s100529901051.
  25. arXiv:hep-ex/0305028, doi:10.1016/j.physletb.2003.08.048.
  26. arXiv:hep-ex/0107005, doi:10.1016/S0370-2693(01)00939-X.
  27. arXiv:hep-ex/0505061, doi:10.1140/epjc/s2005-02345-3.
  28. arXiv:hep-ex/0106068, doi:10.1103/PhysRevLett.87.182001.
  29. arXiv:hep-ex/0605108, doi:10.1103/PhysRevD.75.011103.
  30. arXiv:0802.2499, doi:10.1088/1126-6708/2008/06/066.
  31. arXiv:nucl-ex/0607029, doi:10.1103/PhysRevLett.97.262002.
  32. arXiv:0709.0450, doi:10.1103/PhysRevLett.99.242501.
  33. arXiv:hep-ex/0107043, doi:10.1103/PhysRevLett.87.182002.
  34. arXiv:hep-ex/0605012, doi:10.1103/PhysRevLett.97.072002.
  35. arXiv:0711.4805, doi:10.1103/PhysRevLett.100.162002.
  36. doi:10.1140/epjad/s2004-03-008-x.
  37. arXiv:2111.02030, doi:10.1103/PhysRevD.105.054002.
  38. arXiv:2006.05760, doi:10.1103/PhysRevD.102.096014.
  39. arXiv:1212.1701, doi:10.1140/epja/i2016-16268-9.
  40. arXiv:2103.05419, doi:10.1016/j.nuclphysa.2022.122447.
  41. arXiv:2102.09222, doi:10.1007/s11467-021-1062-0.
  42. arXiv:1206.2913, doi:10.1088/0954-3899/39/7/075001.
  43. arXiv:2007.14491, doi:10.1088/1361-6471/abf3ba.
  44. arXiv:1208.1244, doi:10.1140/epja/i2012-12187-1.
  45. doi:10.1146/annurev-nucl-101917-021129.
  46. arXiv:hep-ph/9702379, doi:10.1103/PhysRevD.56.5511.
  47. arXiv:hep-ph/0109139, doi:10.1007/s10050-002-8794-1.
  48. arXiv:hep-ph/9710270, doi:10.1103/PhysRevD.57.4325.
  49. arXiv:hep-ph/9909489, doi:10.1103/PhysRevD.62.014024.
  50. arXiv:hep-ph/0307150, doi:10.1103/PhysRevD.69.094004.
  51. arXiv:hep-ph/0201265, doi:10.1140/epja/i2002-10120-y.
  52. arXiv:hep-ph/0207340, doi:10.1016/S0550-3213(02)01016-7.
  53. arXiv:hep-ph/0311016, doi:10.1016/j.nuclphysb.2003.12.037.
  54. arXiv:hep-ph/0410191, doi:10.1103/PhysRevD.71.014014.
  55. arXiv:1702.02493, doi:10.1103/PhysRevD.96.013006.
  56. arXiv:1506.04560, doi:10.1007/JHEP01(2016)165.
  57. arXiv:hep-ph/0601177, doi:10.1103/PhysRevD.73.094001.
  58. arXiv:hep-ph/0607213, doi:10.1016/j.nuclphysa.2006.10.006.
  59. arXiv:1010.2815, doi:10.1103/PhysRevD.83.036001.
  60. arXiv:1307.5128, doi:10.1103/PhysRevD.88.073006.
  61. arXiv:1703.00348, doi:10.1016/j.physletb.2017.06.010.
  62. arXiv:1608.08410, doi:10.1140/epjc/s10052-017-4775-z.
  63. arXiv:1801.09154, doi:10.1103/PhysRevLett.120.182001.
  64. arXiv:2209.14285, doi:10.1103/PhysRevD.107.054013.
  65. arXiv:hep-ph/0104198, doi:10.1103/PhysRevC.64.065204.
  66. arXiv:hep-ph/0109174, doi:10.1103/PhysRevD.65.074009.
  67. arXiv:hep-ph/0211386, doi:10.1103/PhysRevD.67.085020.
  68. arXiv:2308.08275, doi:10.1016/j.physletb.2023.138305.
  69. arXiv:1305.1539, doi:10.1103/PhysRevLett.110.262002.
  70. arXiv:2004.03543, doi:10.1103/RevModPhys.93.035005.
  71. arXiv:2112.07519, doi:10.1016/j.physletb.2021.136821.
  72. arXiv:2008.12474, doi:10.1103/PhysRevLett.127.182001.
  73. arXiv:2209.05373, doi:10.1103/PhysRevD.106.114512.
  74. arXiv:2108.10789, doi:10.1103/PhysRevD.105.034501.
  75. arXiv:2207.05768, doi:10.1007/JHEP09(2022)215.
  76. arXiv:2008.10573, doi:10.1103/PhysRevLett.125.262001.
  77. arXiv:hep-lat/0507001, doi:10.1016/j.physletb.2005.09.002.
  78. arXiv:hep-lat/0612032, doi:10.1103/PhysRevLett.98.222001.
  79. arXiv:1908.10706, doi:10.1103/PhysRevD.101.034519.
  80. arXiv:0905.1411, doi:10.1103/PhysRevC.81.035205.
  81. arXiv:1402.4195, doi:10.1016/j.physletb.2014.08.020.
  82. arXiv:2201.12770, doi:10.1016/j.physletb.2022.137005.
  83. arXiv:1901.11430, doi:10.1103/PhysRevLett.122.172001.
  84. arXiv:1911.10913, doi:10.1103/PhysRevD.102.016008.
  85. arXiv:2108.03909, doi:10.1103/PhysRevD.104.094036.
  86. arXiv:2106.04954, doi:10.1016/j.physletb.2022.136890.
  87. doi:10.1103/PhysRevD.108.094002.
  88. arXiv:2307.09869, doi:10.1103/PhysRevD.109.014015.
  89. arXiv:2202.00985, doi:10.1103/PhysRevD.105.094018.
  90. arXiv:2205.04714, doi:10.1016/j.physletb.2022.137360.
  91. arXiv:1404.6234, doi:10.1103/PhysRevD.91.105009.
  92. arXiv:1509.07212, doi:10.1016/j.physletb.2016.04.065.
  93. arXiv:1303.3273, doi:10.1103/PhysRevD.88.065014.
  94. arXiv:hep-ph/0307382, doi:10.1016/j.physrep.2003.08.002.
  95. arXiv:hep-ph/0510376, doi:10.1103/PhysRevD.72.094029.
  96. arXiv:2005.10286, doi:10.1103/PhysRevC.103.045204.
  97. arXiv:hep-ph/0205208, doi:10.1007/s10052-002-1016-9.
  98. arXiv:1807.01076, doi:10.1016/j.nuclphysb.2018.07.003.
  99. arXiv:hep-ph/0009254, doi:10.1016/S0550-3213(00)00695-7.
  100. arXiv:1912.08911, doi:10.1103/PhysRevC.102.022201.
  101. arXiv:2202.08635, doi:10.1103/PhysRevD.105.074024.
  102. arXiv:2211.02959, doi:10.1103/PhysRevD.107.074040.
  103. arXiv:2111.03194, doi:10.1103/PhysRevD.105.036009.
Citations (8)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com