Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asynchronous Microphone Array Calibration using Hybrid TDOA Information (2403.05791v4)

Published 9 Mar 2024 in eess.AS and cs.SD

Abstract: Asynchronous microphone array calibration is a prerequisite for many audition robot applications. A popular solution to the above calibration problem is the batch form of Simultaneous Localisation and Mapping (SLAM), using the time difference of arrival measurements between two microphones (TDOA-M), and the robot (which serves as a moving sound source during calibration) odometry information. In this paper, we introduce a new form of measurement for microphone array calibration, i.e. the time difference of arrival between adjacent sound events (TDOA-S) with respect to the microphone channels. We propose to use TDOA-S and TDOA-M, called hybrid TDOA, together with odometry measurements for bath SLAM-based calibration of asynchronous microphone arrays. Extensive simulation and real-world experiments show that our method is more independent of microphone number, less sensitive to initial values (when using off-the-shelf algorithms such as Gauss-Newton iterations), and has better calibration accuracy and robustness under various TDOA noises. Simulation results also demonstrate that our method has a lower Cram\'er-Rao lower bound (CRLB) for microphone parameters. To benefit the community, we open-source our code and data at https://github.com/AISLAB-sustech/Hybrid-TDOA-Calib.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. Z. Wang, W. Zou, H. Su, Y. Guo, and D. Li, “Multiple sound source localization exploiting robot motion and approaching control,” IEEE Transactions on Instrumentation and Measurement, vol. 72, pp. 1–16, 2023.
  2. K. Nakamura, K. Nakadai, F. Asano, and G. Ince, “Intelligent sound source localization and its application to multimodal human tracking,” in 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 143–148, 2011.
  3. A. Plinge, F. Jacob, R. Haeb-Umbach, and G. A. Fink, “Acoustic microphone geometry calibration: An overview and experimental evaluation of state-of-the-art algorithms,” IEEE Signal Processing Magazine, vol. 33, no. 4, pp. 14–29, 2016.
  4. M. Crocco, A. Del Bue, and V. Murino, “A bilinear approach to the position self-calibration of multiple sensors,” IEEE Transactions on Signal Processing, vol. 60, no. 2, pp. 660–673, 2012.
  5. Y. Kuang, S. Burgess, A. Torstensson, and K. Åström, “A complete characterization and solution to the microphone position self-calibration problem,” in 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 3875–3879, 2013.
  6. N. Ono, H. Kohno, N. Ito, and S. Sagayama, “Blind alignment of asynchronously recorded signals for distributed microphone array,” in 2009 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, pp. 161–164, 2009.
  7. L. Wang, T.-K. Hon, J. D. Reiss, and A. Cavallaro, “Self-localization of ad-hoc arrays using time difference of arrivals,” IEEE Transactions on Signal Processing, vol. 64, no. 4, pp. 1018–1033, 2016.
  8. D. E. Badawy, V. Larsson, M. Pollefeys, and I. Dokmanić, “Localizing unsynchronized sensors with unknown sources,” IEEE Transactions on Signal Processing, vol. 71, pp. 641–654, 2023.
  9. D. Su, T. Vidal-Calleja, and J. V. Miro, “Simultaneous asynchronous microphone array calibration and sound source localisation,” in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5561–5567, 2015.
  10. D. Su, T. Vidal-Calleja, and J. V. Miro, “Asynchronous microphone arrays calibration and sound source tracking,” Autonomous Robots, vol. 44, no. 2, pp. 183–204, 2020.
  11. D. Su, H. Kong, S. Sukkarieh, and S. Huang, “Necessary and sufficient conditions for observability of slam-based tdoa sensor array calibration and source localization,” IEEE Transactions on Robotics, vol. 37, no. 5, pp. 1451–1468, 2021.
  12. G. Grisetti, R. Kümmerle, C. Stachniss, and W. Burgard, “A tutorial on graph-based slam,” IEEE Intelligent Transportation Systems Magazine, vol. 2, no. 4, pp. 31–43, 2010.
  13. H. Miura, T. Yoshida, K. Nakamura, and K. Nakadai, “Slam-based online calibration of asynchronous microphone array for robot audition,” in 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 524–529, 2011.
  14. C. Knapp and G. Carter, “The generalized correlation method for estimation of time delay,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 24, no. 4, pp. 320–327, 1976.
  15. E. Robledo-Arnuncio, T. S. Wada, and B.-H. Juang, “On dealing with sampling rate mismatches in blind source separation and acoustic echo cancellation,” in 2007 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, pp. 34–37, 2007.
  16. John Wiley & Sons, 2004.
  17. S. M. Kay, Fundamentals of statistical signal processing: estimation theory. USA: Prentice-Hall, Inc., 1993.
  18. T. Qin, P. Li, and S. Shen, “Vins-mono: A robust and versatile monocular visual-inertial state estimator,” IEEE Transactions on Robotics, vol. 34, no. 4, pp. 1004–1020, 2018.
  19. S. Michaud, S. Faucher, F. Grondin, J.-S. Lauzon, M. Labbé, D. Létourneau, F. Ferland, and F. Michaud, “3d localization of a sound source using mobile microphone arrays referenced by slam,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 10402–10407, 2020.
Citations (3)

Summary

We haven't generated a summary for this paper yet.