Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Systematic assessment of various universal machine-learning interatomic potentials (2403.05729v3)

Published 8 Mar 2024 in cond-mat.mtrl-sci

Abstract: Machine-learning interatomic potentials have revolutionized materials modeling at the atomic scale. Thanks to these, it is now indeed possible to perform simulations of \abinitio quality over very large time and length scales. More recently, various universal machine-learning models have been proposed as an out-of-box approach avoiding the need to train and validate specific potentials for each particular material of interest. In this paper, we review and evaluate five different universal machine-learning interatomic potentials (uMLIPs), all based on graph neural network architectures which have demonstrated transferability from one chemical system to another. The evaluation procedure relies on data both from a recent verification study of density-functional-theory implementations and from the Materials Project. Through this comprehensive evaluation, we aim to provide guidance to materials scientists in selecting suitable models for their specific research problems, offer recommendations for model selection and optimization, and stimulate discussion on potential areas for improvement in current machine-learning methodologies in materials science.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (49)
  1. Frenkel D, Smit B. Understanding molecular simulation: from algorithms to applications. Elsevier, 2023.
  2. Hohenberg P, Kohn W. Inhomogeneous Electron Gas. Phys. Rev.. 1964;136(3B):B864-B871. doi: 10.1103/physrev.136.b864
  3. Kohn W, Sham LJ. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev.. 1965;140(4A):A1133-A1138. doi: 10.1103/physrev.140.a1133
  4. doi: 10.1038/s41563-021-01013-3
  5. Goddard I. Classical Force Fields and Methods of Molecular Dynamics:1063–1072; Springer International Publishing . 2021.
  6. doi: 10.1002/adma.201902765
  7. Behler J, Parrinello M. Generalized Neural-Network Representation of High-Dimensional Potential-Energy Surfaces. Physical Review Letters. 2007;98(14). doi: 10.1103/physrevlett.98.146401
  8. doi: 10.1103/physrevlett.104.136403
  9. doi: 10.1016/j.jcp.2014.12.018
  10. doi: 10.1063/1.5019779
  11. Drautz R. Atomic cluster expansion for accurate and transferable interatomic potentials. Physical Review B. 2019;99(1). doi: 10.1103/physrevb.99.014104
  12. Lilienfeld vOA, Burke K. Retrospective on a decade of machine learning for chemical discovery. Nature Communications. 2020;11(1). doi: 10.1038/s41467-020-18556-9
  13. doi: 10.1038/s41467-022-29939-5
  14. Ko TW, Ong SP. Recent advances and outstanding challenges for machine learning interatomic potentials. Nature Computational Science. 2023;3(12):998–1000. doi: 10.1038/s43588-023-00561-9
  15. doi: 10.1021/acs.chemrev.1c00022
  16. doi: 10.1021/acs.chemmater.9b01294
  17. doi: 10.1063/1.4812323
  18. doi: 10.1103/physrevlett.77.3865
  19. Chen C, Ong SP. A universal graph deep learning interatomic potential for the periodic table. Nature Computational Science. 2022;2(11):718–728. doi: 10.1038/s43588-022-00349-3
  20. doi: 10.1038/s42256-023-00716-3
  21. https://github.com/materialsvirtuallab/matgl; . Accessed: 2024-02-29.
  22. doi: 10.1039/d2dd00096b
  23. doi: 10.1038/s41524-020-00440-1
  24. doi: 10.1088/0953-8984/22/2/022201
  25. doi: 10.1038/s41586-023-06735-9
  26. doi: 10.1038/s41467-022-30687-9
  27. doi: 10.1016/j.jmat.2022.12.007
  28. doi: 10.1016/j.commatsci.2022.111280
  29. doi: 10.1039/c6sc05720a
  30. doi: 10.1038/s41467-019-10827-4
  31. doi: 10.1126/sciadv.aav6490
  32. doi: 10.1103/physrevmaterials.7.045802
  33. Choudhary K, DeCost B. Atomistic Line Graph Neural Network for improved materials property predictions. npj Computational Materials. 2021;7(1). doi: 10.1038/s41524-021-00650-1
  34. doi: 10.1038/s42254-023-00655-3
  35. doi: 10.1038/sdata.2018.65
  36. doi: 10.1016/j.cpc.2019.107042
  37. doi: 10.1063/1.5144261
  38. Hamann DR. Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B. 2013;88(8):085117. doi: 10.1103/physrevb.88.085117
  39. doi: 10.1016/j.cpc.2018.01.012
  40. Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999;59:1758–1775. doi: 10.1103/PhysRevB.59.1758
  41. doi: 10.1063/1.5143061
  42. Blöchl PE. Projector augmented-wave method. Phys. Rev. B. 1994;50:17953–17979. doi: 10.1103/PhysRevB.50.17953
  43. Riebesell J. Pymatviz: visualization toolkit for materials informatics. Web Page; 2022. 10.5281/zenodo.7486816 - https://github.com/janosh/pymatviz
  44. doi: 10.1088/1361-648X/acd831
  45. Togo A. First-principles Phonon Calculations with Phonopy and Phono3py. J. Phys. Soc. Jpn.. 2023;92(1):012001. doi: 10.7566/JPSJ.92.012001
  46. doi: 10.1103/physrevb.55.10355
  47. doi: 10.1103/revmodphys.73.515
  48. Setyawan W, Curtarolo S. High-throughput electronic band structure calculations: Challenges and tools. Computational Materials Science. 2010;49(2):299–312. doi: 10.1016/j.commatsci.2010.05.010
  49. doi: 10.1088/1361-648x/aa680e
Citations (9)

Summary

We haven't generated a summary for this paper yet.